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Chapter 1: A Macroevolutionary Research Pro-
gram

Section 1.1: Introduction

Evolution is happening all around us. In many cases – lately, due to technologi-
cal advances in molecular biology – scientists can now describe the evolutionary
process in exquisite detail. For example, we know exactly which genes change
in frequency from one generation to the next as mice and lizards evolve a white
color to match the pale sands of their novel habitats (Rosenblum et al. 2010).
We understand the genetics, development, and biomechanical processes that link
changes in a Galapagos finches’ diet to the shape of their bill (Abzhanov et al.
2004). And, in some cases, we can watch as one species splits to become two
(for example, Rolshausen et al. 2009).

Detailed studies of evolution over short time-scales have been incredibly fruitful
and important for our understanding of biology. But evolutionary biologists
have always wanted more than this. Evolution strikes a chord in society because
it aims to tell us how we, along with all the other living things that we know
about, came to be. This story stretches back some 4 billion years in time. It
includes all of the drama that one could possibly want – sex, death, great blooms
of life and global catastrophes. It has had “winners” and “losers,” groups that
wildly diversified, others that expanded then crashed to extinction, as well as
species that have hung on in basically the same form for hundreds of millions
of years.

There is, perhaps, no more evocative symbol of this grand view of evolution
over deep time than the tree of life (Figure 1.1; Rosindell and Harmon 2012).
This branching phylogenetic tree connects all living things through a series of
splitting events to a single common ancestor. Recent research has dramatically
increased our knowledge of the shape and form of this tree. The tree of life is
a rich treasure-trove of information, telling us how species are related to one
another, which groups are exceptionally diverse or depauperate, and how life
has evolved, formed new species, and spread over the globe. Our knowledge of
the tree of life, still incomplete but advancing every day, promises to transform
our understanding of evolution at the grandest scale (Baum and Smith 2012).

Knowing the evolutionary processes that operate over the course of a few gen-
erations, even in great detail, does not automatically give insight into why the
tree of life is shaped the way that it is. At the same time, it seems reasonable to
hypothesize that the same processes that we can observe now - natural selection,
genetic drift, migration, sexual selection, and so on - have been occurring for
the last four billion years or so along the branches of the tree. A major chal-
lenge for evolutionary biology, then, comes in connecting our knowledge of the
mechanisms of evolution with broad-scale patterns seen in the tree of life. This
“tree thinking” is what we will explore here.
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Figure 1.1. A small section of the tree of life showing the relationships among
tetrapods, from OneZoom (Rosindell and Harmon 2012). This image can be
reused under a CC-BY-4.0 license.

In this book, I describe methods to connect evolutionary processes to broad-scale
patterns in the tree of life. I focus mainly – but not exclusively – on phylogenetic
comparative methods. Comparative methods combine biology, mathematics,
and computer science to learn about a wide variety of topics in evolution using
phylogenetic trees and other associated data (see Harvey and Pagel 1991 for an
early review). For example, we can find out which processes must have been
common, and which rare, across clades in the tree of life; whether evolution
has proceeded differently in some lineages compared to others; and whether the
evolutionary potential that we see playing out in real time is sufficient to explain
the diversity of life on earth, or whether we might need additional processes that
may come into play only very rarely or over very long timescales, like adaptive
radiation or species selection.

This introductory chapter has three sections. First, I lay out the background
and context for this book, highlighting the role that I hope it will play for readers.
Second, I include some background material on phylogenies - both what they
are, and how they are constructed. This is necessary information that leads into
the methods presented in the remainder of the chapters of the book; interested
readers can also read Felsenstein (Felsenstein 2004), which includes much more
detail. Finally, I briefly outline the book’s remaining chapters.

Section 1.2: The roots of comparative methods

The comparative approaches in this book stem from and bring together three
main fields: population and quantitative genetics, paleontology, and phyloge-
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netics. I will provide a very brief discussion of how these three fields motivate
the models and hypotheses in this book (see Pennell and Harmon 2013 for a
more comprehensive review).

The fields of population and quantitative genetics include models of how gene
frequencies and trait values change through time. These models lie at the core
of evolutionary biology, and relate closely to a number of approaches in compar-
ative methods. Population genetics tends to focus on allele frequencies, while
quantitative genetics focuses on traits and their heritability; however, genomics
has begun to blur this distinction a bit. Both population and quantitative ge-
netics approaches have their roots in the modern synthesis, especially the work
of Fisher (1930) and Wright (1984), but both have been greatly elaborated since
then (Falconer et al. 1996; see Lynch and Walsh 1998; Rice 2004). Although
population and quantitative genetic approaches most commonly focus on change
over one or a few generations, they have been applied to macroevolution with
great benefit. For example, Lande (1976) provided quantitative genetic pre-
dictions for trait evolution over many generations using Brownian motion and
Ornstein-Uhlenbeck models (see Chapter 3). Lynch (1990) later showed that
these models predict long-term rates of evolution that are actually too fast;
that is, variation among species is too small compared to what we know about
the potential of selection and drift (or, even, drift alone!) to change traits. This
is, by the way, a great example of the importance of macroevolutionary research
from a deep-time perspective. Given the regular observation of strong selection
in natural populations, who would have guessed that long-term patterns of di-
vergence are actually less than we would expect, even considering only genetic
drift (see also Uyeda et al. 2011)?

Paleontology has, for obvious reasons, focused on macroevolutionary models
as an explanation for the distribution of species and traits in the fossil record.
Almost all of the key questions that I tackle in this book are also of primary
interest to paleontologists - and comparative methods has an especially close
relationship to paleobiology, the quantitative mathematical side of paleontology
(Valentine 1996; Benton and Harper 2013). For example, a surprising number of
the macroevolutionary models and concepts in use today stem from quantitative
approaches to paleobiology by Raup and colleagues in the 1970s and 1980s (e.g.
Raup et al. 1973; Raup 1985). Many of the models that I will use in this book
– for example, birth-death models for the formation and extinction of species –
were first applied to macroevolution by paleobiologists.

Finally, comparative methods has deep roots in phylogenetics. In fact, many
modern phylogenetic approaches to macroevolution can be traced to Felsen-
stein’s (1985) paper introducing independent contrasts. This paper was unique
in three main ways. First, Felsenstein’s paper was written in a remarkably clear
way, and convinced scientists from a range of disciplines of the necessity and
value of placing their comparative work in a phylogenetic context. Second, the
method of phylogenetic independent contrasts was computationally fast and
straightforward to interpret. And finally, Felsenstein’s work suggested a way to
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connect the previous two topics, quantitative genetics and paleobiology, using
math. I discuss independent contrasts, which continue to find new applications,
in great detail later in the book. Felsenstein (1985) spawned a whole industry
of quantitative approaches that apply models from population and quantitative
genetics, paleobiology, and ecology to data that includes a phylogenetic tree.

More than twenty-five years ago, “The Comparative Method in Evolutionary
Biology,” by Harvey and Pagel (1991) synthesized the new field of comparative
methods into a single coherent framework. Even reading this book nearly 25
years later one can still feel the excitement and potential unlocked by a suite of
new methods that use phylogenetic trees to understand macroevolution. But in
the time since Harvey and Pagel (1991), the field of comparative methods has
exploded – especially in the past decade. Much of this progress was, I think,
directly inspired by Harvey and Pagel’s book, which went beyond review and
advocated a model-based approach for comparative biology. My wildest hope
is that my book can serve a similar purpose.

My goals in writing this book, then, are three-fold. First, to provide a general
introduction to the mathematical models and statistical approaches that form
the core of comparative methods; second, to give just enough detail on statistical
machinery to help biologists understand how to tailor comparative methods
to their particular questions of interest, and to help biologists get started in
developing their own new methods; and finally, to suggest some ideas for how
comparative methods might progress over the next few years.

Section 1.3: A brief introduction to phylogenetic trees

It is hard work to reconstruct a phylogenetic tree. This point has been made
many times (for example, see Felsenstein 2004), but bears repeating here. There
are an enormous number of ways to connect a set of species by a phylogenetic
tree – and the number of possible trees grows extremely quickly with the number
of species. For example, there are about 5 × 1038 ways to build a phylogenetic
tree1 of 30 species, which is many times larger than the number of stars in
the universe. Additionally, the mathematical problem of reconstructing trees
in an optimal way from species’ traits is an example of a problem that is “NP-
complete,” a class of problems that include some of the most computationally
difficult in the world. Building phylogenies is difficult.

The difficulty of building phylogenies is currently reflected in the challenge of
reconstructing the tree of life. Some parts of the tree of life are still unresolved
even with the tremendous amounts of genomic data that are now available.
Accordingly, scientists have devoted a focused effort to solving this difficult
problem. There are now a large number of fast and efficient computer programs
aimed solely at reconstructing phylogenetic trees (e.g. MrBayes: Ronquist and
Huelsenbeck 2003; BEAST: Drummond and Rambaut 2007). Consequently, the
number of well-resolved phylogenetic trees available is also increasing rapidly.
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As we begin to fill in the gaps of the tree of life, we are developing a much
clearer idea of the patterns of evolution that have happened over the past 4.5
billion years on Earth.

A core reason that phylogenetic trees are difficult to reconstruct is that they
are information-rich2. A single tree contains detailed information about the
patterns and timing of evolutionary branching events through a group’s history.
Each branch in a tree tells us about common ancestry of a clade of species,
and the start time, end time, and branch length tell us about the timing of
speciation events in the past. If we combine a phylogenetic tree with some trait
data – for example, mean body size for each species in a genus of mammals –
then we can obtain even more information about the evolutionary history of a
section of the tree of life.

The most common methods for reconstructing phylogenetic trees use data on
species’ genes and/or traits. The core information about phylogenetic related-
ness of species is carried in shared derived characters; that is, characters that
have evolved new states that are shared among all of the species in a clade and
not found in the close relatives of that clade. For example, mammals have many
shared derived characters, including hair, mammary glands, and specialized in-
ner ear bones.

Phylogenetic trees are often constructed based on genetic (or genomic) data
using modern computer algorithms. Several methods can be used to build
trees, like parsimony, maximum likelihood, and Bayesian analyses (see Chapter
2). These methods all have distinct assumptions and can give different results.
In fact, even within a given statistical framework, different software packages
(e.g. MrBayes and BEAST, mentioned above, are both Bayesian approaches) can
give different results for phylogenetic analyses of the same data. The details of
phylogenetic tree reconstruction are beyond the scope of this book. Interested
readers can read “Inferring Phylogenies” (Felsenstein 2004), “Computational
Molecular Evolution” (Yang 2006), or other sources for more information.

For many current comparative methods, we take a phylogenetic tree for a group
of species as a given – that is, we assume that the tree is known without er-
ror. This assumption is almost never justified. There are many reasons why
phylogenetic trees are estimated with error. For example, estimating branch
lengths from a few genes is difficult, and the branch lengths that we estimate
should be viewed as uncertain. As another example, trees that show the rela-
tionships among genes (gene trees) are not always the same as trees that show
the relationships among species (species trees). Because of this, the best com-
parative methods recognize that phylogenetic trees are always estimated with
some amount of uncertainty, both in terms of topology and branch lengths, and
incorporate that uncertainty into the analysis. I will describe some methods to
accomplish this in later chapters.

How do we make sense of the massive amounts of information contained in large
phylogenetic trees? The definition of “large” can vary, but we already have trees
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with tens of thousands of tips, and I think we can anticipate trees with millions
of tips in the very near future. These trees are too large to comfortably fit into
a human brain. Current tricks for dealing with trees – like banks of computer
monitors or long, taped-together printouts – are inefficient and will not work
for the huge phylogenetic trees of the future. We need techniques that will
allow us to take large phylogenetic trees and extract useful information from
them. This information includes, but is not limited to, estimating rates of
speciation, extinction, and trait evolution; testing hypotheses about the mode
of evolution in a group; identifying adaptive radiations, key innovations, and
other macroevolutionary explanations for diversity; and many other things.

Section 1.4: What we can (and can’t) learn about evolu-
tionary history from living species

Traditionally, scientists have used fossils to quantify rates and patterns of evolu-
tion through long periods of time (sometimes called “macroevolution”). These
approaches have been tremendously informative. We now have a detailed picture
of the evolutionary dynamics of many groups, from hominids to crocodilians. In
some cases, very detailed fossil records of some types of organisms – for example,
marine invertebrates – have allowed quantitative tests of particular evolutionary
models.

Fossils are particularly good at showing how species diversity and morphological
characters change through time. For example, if one has a sequence of fossils
with known times of occurrence, one can reconstruct patterns of species diversity
through time. A classic example of this is Sepkoski’s (1984) reconstruction of
the diversity of marine invertebrates over the past 600 million years. One can
also quantify the traits of those fossils and measure how they change across
various time intervals (e.g. Foote 1997). In some groups, we can make plots of
changes in lineage and trait diversity simultaneously (Figure 1.2). Fossils are
the only evidence we have for evolutionary lineages that have gone extinct, and
they provide valuable direct evidence about evolutionary dynamics in the past.

However, fossil-based approaches face some challenges. The first is that the fossil
record is incomplete. This is a well-known phenomenon, identified by Darwin
himself (although many new fossils continue to be found). The fossil record is
incomplete in some very particular ways that can sometimes hamper our ability
to study evolutionary processes using fossils alone. One example is that fossils
are rare or absent from some classical examples of adaptive radiation on islands.
For example, the entire fossil record of Caribbean anoles, a well-known adaptive
radiation of lizards, consists of less than ten specimens preserved in amber (Losos
2009). We similarly lack fossils for other adaptive radiations like African cichlids
and Darwin’s finches. The absence of fossils in these groups limits our ability
to directly study the early stages of adaptive radiation. Another limitation of
the fossil record relates to species and speciation. It is very difficult to identify
and classify species in the fossil record – even more difficult than it is to do so
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for living species. It is hard to tell species apart, and particularly difficult to
pin down the exact time when new species split off from their close relatives.
In fact, most studies of fossil diversity focus on higher taxonomic groups like
genera, families, or orders (see, e.g., Sepkoski 1984). These studies have been
immensely valuable but it can be difficult to connect these results to what we
know about living species. In fact, it is species (and not genera, families, or
orders) that form the basic units of almost all evolutionary studies. So, fossils
have great value but also suffer from some particular limitations.

Figure 1.2. Diversity and disparity in the fossil record for the Blastoids. Plots
show A. diversity (number of genera) and B. disparity (trait variance) through
time. Image by the author, inspired by Foote (1997). This image can be reused
under a CC-BY-4.0 license.

Phylogenetic trees represent a rich source of complementary information about
the dynamics of species formation through time. Phylogenetic approaches pro-
vide a useful complement to fossils because their limitations are very different
from the limitations of the fossil record. For example, one can often include
all of the living species in a group when creating a phylogenetic tree. Addition-
ally, one can use information from detailed systematic and taxonomic studies
to identify species, rather than face the ambiguity inherent when using fossils.
Phylogenetic trees provide a distinct source of information about evolutionary
change that is complementary to approaches based on fossils. However, phylo-
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genetic trees do not provide all of the answers. In particular, there are certain
problems that comparative data alone simply cannot address. The most promi-
nent of these, which I will return to later, are reconstructing traits of particular
ancestors (ancestral state reconstruction; Losos 2011) and distinguishing be-
tween certain types of models where the tempo of evolution changes through
time (Slater et al. 2012a). Some authors have argued that extinction, as well,
cannot be detected in the shape of a phylogenetic tree (Rabosky 2010). I will
argue against this point of view in Chapter 11, but extinction still remains a
tricky problem when one is limited to samples from a single time interval (the
present day). Phylogenetic trees provide a rich source of information about the
past, but we should be mindful of their limitations (Alroy 1999).

Perhaps the best approach would combine fossil and phylogenetic data directly.
Paleontologists studying fossils and neontologists studying phylogenetic trees
share a common set of mathematical models. This means that, at some point,
the two fields can merge, and both types of information can be combined to study
evolutionary patterns in a cohesive and integrative way. However, surprisingly
little work has so far been done in this area (but see Slater et al. 2012a, Heath
et al. (2014)).

Section 1.5: Overview of the book

In this book, I outline statistical procedures for analyzing comparative data.
Some methods – such as those for estimating patterns of speciation and extinc-
tion through time – require an ultrametric phylogenetic tree. Other approaches
model trait evolution, and thus require data on the traits of species that are
included in the phylogenetic tree. The methods also differ as to whether or not
they require the phylogenetic tree to be complete – that is, to include every liv-
ing species descended from a certain ancestor – or can accommodate a smaller
sample of the living species.

The book begins with a general discussion of model-fitting approaches to statis-
tics (Chapter 2), with a particular focus on maximum likelihood and Bayesian
approaches. In Chapters 3-9, I describe models of character evolution. I discuss
approaches to simulating and analyzing the evolution of these characters on a
tree. Chapters 10-12 focus on models of diversification, which describe patterns
of speciation and extinction through time. I describe methods that allow us
to simulate and fit these models to comparative data. Chapter 13 covers com-
bined analyses of both character evolution and lineage diversification. Finally,
in Chapter 14 I discuss what we have learned so far about evolution from these
approaches, and what we are likely to learn in the future.

There are a number of computer software tools that can be used to carry out
the methods described here. In this book, I focus on the statistical software
environment R. For each chapter, my course website, in progress, provides
sample R code that can be used to carry out all described analyses. I hope

12

http://macroevolutioncourse.weebly.com/


that this R code will allow further development of this language for compar-
ative analyses. However, it is possible to carry out the algorithms we de-
scribe using other computer software or programming languages (e.g. Arbor,
http://www.arborworkflows.com).

Statistical comparative methods represent a promising future for evolutionary
studies, especially as our knowledge of the tree of life expands. I hope that the
methods described in this book can serve as a Rosetta stone that will help us
read the tree of life as it is being built.

Footnotes

1: This calculation gives the number of distinct tree shapes (ignoring branch
lengths) that are fully bifurcating – that is, each species has two descendants -
and rooted.

2: Another difficulty is that the “tree” of life may not look much like a tree
due to hybridization, introgression, and other non-branching processes. These
issues are currently barely addressed by comparative methods (but see Bastide
et al. 2018), and rarely in this book as well! We leave that as a pressing future
problem that has only begun to be solved.
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Chapter 2: Fitting Statistical Models to Data

Section 2.1: Introduction

Evolution is the product of a thousand stories. Individual organisms are born,
reproduce, and die. The net result of these individual life stories over broad
spans of time is evolution. At first glance, it might seem impossible to model
this process over more than one or two generations. And yet scientific progress
relies on creating simple models and confronting them with data. How can we
evaluate models that consider evolution over millions of generations?

There is a solution: we can rely on the properties of large numbers to create
simple models that represent, in broad brushstrokes, the types of changes that
take place over evolutionary time. We can then compare these models to data
in ways that will allow us to gain insights into evolution.

This book is about constructing and testing mathematical models of evolution.
In my view the best comparative approaches have two features. First, the most
useful methods emphasize parameter estimation over test statistics and P-values.
Ideal methods fit models that we care about and estimate parameters that have
a clear biological interpretation. To be useful, methods must also recognize and
quantify uncertainty in our parameter estimates. Second, many useful methods
involve model selection, the process of using data to objectively select the best
model from a set of possibilities. When we use a model selection approach,
we take advantage of the fact that patterns in empirical data sets will reject
some models as implausible and support the predictions of others. This sort of
approach can be a nice way to connect the results of a statistical analysis to a
particular biological question.

In this chapter, I will first give a brief overview of standard hypothesis testing
in the context of phylogenetic comparative methods. However, standard hy-
pothesis testing can be limited in complex, real-world situations, such as those
encountered commonly in comparative biology. I will then review two other
statistical approaches, maximum likelihood and Bayesian analysis, that are of-
ten more useful for comparative methods. This latter discussion will cover both
parameter estimation and model selection.

All of the basic statistical approaches presented here will be applied to evolution-
ary problems in later chapters. It can be hard to understand abstract statistical
concepts without examples. So, throughout this part of the chapter, I will refer
back to a simple example.

A common simple example in statistics involves flipping coins. To fit
with the theme of this book, however, I will change this to flipping
a lizard (needless to say, do not try this at home!). Suppose you
have a lizard with two sides, “heads” and “tails.” You want to flip
the lizard to help make decisions in your life. However, you do not
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know if this is a fair lizard, where the probability of obtaining heads
is 0.5, or not. Perhaps, for example, lizards have a cat-like ability to
right themselves when flipped. As an experiment, you flip the lizard
100 times, and obtain heads 63 of those times. Thus, 63 heads out
of 100 lizard flips is your data; we will use model comparisons to try
to see what these data tell us about models of lizard flipping.

Section 2.2: Standard statistical hypothesis testing

Standard hypothesis testing approaches focus almost entirely on rejecting null
hypotheses. In the framework (usually referred to as the frequentist approach
to statistics) one first defines a null hypothesis. This null hypothesis represents
your expectation if some pattern, such as a difference among groups, is not
present, or if some process of interest were not occurring. For example, perhaps
you are interested in comparing the mean body size of two species of lizards,
an anole and a gecko. Our null hypothesis would be that the two species do
not differ in body size. The alternative, which one can conclude by rejecting
that null hypothesis, is that one species is larger than the other. Another
example might involve investigating two variables, like body size and leg length,
across a set of lizard species1. Here the null hypothesis would be that there is
no relationship between body size and leg length. The alternative hypothesis,
which again represents the situation where the phenomenon of interest is actually
occurring, is that there is a relationship with body size and leg length. For
frequentist approaches, the alternative hypothesis is always the negation of the
null hypothesis; as you will see below, other approaches allow one to compare
the fit of a set of models without this restriction and choose the best amongst
them.

The next step is to define a test statistic, some way of measuring the patterns
in the data. In the two examples above, we would consider test statistics that
measure the difference in mean body size among our two species of lizards, or
the slope of the relationship between body size and leg length, respectively. One
can then compare the value of this test statistic in the data to the expectation of
this test statistic under the null hypothesis. The relationship between the test
statistic and its expectation under the null hypothesis is captured by a P-value.
The P-value is the probability of obtaining a test statistic at least as extreme
as the actual test statistic in the case where the null hypothesis is true. You
can think of the P-value as a measure of how probable it is that you would
obtain your data in a universe where the null hypothesis is true. In other words,
the P-value measures how probable it is under the null hypothesis that you
would obtain a test statistic at least as extreme as what you see in the data. In
particular, if the P-value is very large, say P = 0.94, then it is extremely likely
that your data are compatible with this null hypothesis.

If the test statistic is very different from what one would expect under the null
hypothesis, then the P-value will be small. This means that we are unlikely to
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obtain the test statistic seen in the data if the null hypothesis were true. In that
case, we reject the null hypothesis as long as P is less than some value chosen
in advance. This value is the significance threshold, α, and is almost always
set to α = 0.05. By contrast, if that probability is large, then there is nothing
“special” about your data, at least from the standpoint of your null hypothesis.
The test statistic is within the range expected under the null hypothesis, and we
fail to reject that null hypothesis. Note the careful language here – in a standard
frequentist framework, you never accept the null hypothesis, you simply fail to
reject it.

Getting back to our lizard-flipping example, we can use a frequentist approach.
In this case, our particular example has a name; this is a binomial test, which
assesses whether a given event with two outcomes has a certain probability of
success. In this case, we are interested in testing the null hypothesis that our
lizard is a fair flipper; that is, that the probability of heads pH = 0.5. The
binomial test uses the number of “successes” (we will use the number of heads,
H = 63) as a test statistic. We then ask whether this test statistic is either
much larger or much smaller than we might expect under our null hypothesis.
So, our null hypothesis is that pH = 0.5; our alternative, then, is that pH takes
some other value: pH ̸= 0.5.

To carry out the test, we first need to consider how many “successes” we should
expect if the null hypothesis were true. We consider the distribution of our
test statistic (the number of heads) under our null hypothesis (pH = 0.5). This
distribution is a binomial distribution (Figure 2.1).

We can use the known probabilities of the binomial distribution to calculate
our P-value. We want to know the probability of obtaining a result at least as
extreme as our data when drawing from a binomial distribution with parameters
p = 0.5 and n = 100. We calculate the area of this distribution that lies to the
right of 63. This area, P = 0.003, can be obtained either from a table, from
statistical software, or by using a relatively simple calculation. The value, 0.003,
represents the probability of obtaining at least 63 heads out of 100 trials with
pH = 0.5. This number is the P-value from our binomial test. Because we only
calculated the area of our null distribution in one tail (in this case, the right,
where values are greater than or equal to 63), then this is actually a one-tailed
test, and we are only considering part of our null hypothesis where pH > 0.5.
Such an approach might be suitable in some cases, but more typically we need
to multiply this number by 2 to get a two-tailed test; thus, P = 0.006. This
two-tailed P-value of 0.006 includes the possibility of results as extreme as our
test statistic in either direction, either too many or too few heads. Since P <
0.05, our chosen α value, we reject the null hypothesis, and conclude that we
have an unfair lizard.

In biology, null hypotheses play a critical role in many statistical analyses. So
why not end this chapter now? One issue is that biological null hypotheses are
almost always uninteresting. They often describe the situation where patterns
in the data occur only by chance. However, if you are comparing living species
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Figure 2.1. The unfair lizard. We use the null hypothesis to generate a null
distribution for our test statistic, which in this case is a binomial distribution
centered around 50. We then look at our test statistic and calculate the prob-
ability of obtaining a result at least as extreme as this value. Image by the
author, can be reused under a CC-BY-4.0 license.
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to each other, there are almost always some differences between them. In fact,
for biology, null hypotheses are quite often obviously false. For example, two
different species living in different habitats are not identical, and if we measure
them enough we will discover this fact. From this point of view, both outcomes
of a standard hypothesis test are unenlightening. One either rejects a silly hy-
pothesis that was probably known to be false from the start, or one “fails to
reject” this null hypothesis2. There is much more information to be gained by
estimating parameter values and carrying out model selection in a likelihood
or Bayesian framework, as we will see below. Still, frequentist statistical ap-
proaches are common, have their place in our toolbox, and will come up in
several sections of this book.

One key concept in standard hypothesis testing is the idea of statistical error.
Statistical errors come in two flavors: type I and type II errors. Type I errors
occur when the null hypothesis is true but the investigator mistakenly rejects it.
Standard hypothesis testing controls type I errors using a parameter, α, which
defines the accepted rate of type I errors. For example, if α = 0.05, one should
expect to commit a type I error about 5% of the time. When multiple standard
hypothesis tests are carried out, investigators often “correct” their P-values
using Bonferroni correction. If you do this, then there is only a 5% chance of a
single type I error across all of the tests being considered. This singular focus
on type I errors, however, has a cost. One can also commit type II errors, when
the null hypothesis is false but one fails to reject it. The rate of type II errors in
statistical tests can be extremely high. While statisticians do take care to create
approaches that have high power, traditional hypothesis testing usually fixes
type I errors at 5% while type II error rates remain unknown. There are simple
ways to calculate type II error rates (e.g. power analyses) but these are only
rarely carried out. Furthermore, Bonferroni correction dramatically increases
the type II error rate. This is important because – as stated by Perneger (1998)
– “… type II errors are no less false than type I errors.” This extreme emphasis
on controlling type I errors at the expense of type II errors is, to me, the main
weakness of the frequentist approach3.

I will cover some examples of the frequentist approach in this book, mainly
when discussing traditional methods like phylogenetic independent contrasts
(PICs). Also, one of the model selection approaches used frequently in this
book, likelihood ratio tests, rely on a standard frequentist set-up with null and
alternative hypotheses.

However, there are two good reasons to look for better ways to do compara-
tive statistics. First, as stated above, standard methods rely on testing null
hypotheses that – for evolutionary questions - are usually very likely, a priori,
to be false. For a relevant example, consider a study comparing the rate of
speciation between two clades of carnivores. The null hypothesis is that the two
clades have exactly equal rates of speciation – which is almost certainly false,
although we might question how different the two rates might be. Second, in
my opinion, standard frequentist methods place too much emphasis on P-values
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and not enough on the size of statistical effects. A small P-value could reflect
either a large effect or very large sample sizes or both.

In summary, frequentist statistical methods are common in comparative statis-
tics but can be limiting. I will discuss these methods often in this book, mainly
due to their prevalent use in the field. At the same time, we will look for
alternatives whenever possible.

Section 2.3: Maximum likelihood

Section 2.3a: What is a likelihood?

Since all of the approaches described in the remainer of this chapter involve
calculating likelihoods, I will first briefly describe this concept. A good general
review of likelihood is Edwards (1992). Likelihood is defined as the probability,
given a model and a set of parameter values, of obtaining a particular set of data.
That is, given a mathematical description of the world, what is the probability
that we would see the actual data that we have collected?

To calculate a likelihood, we have to consider a particular model that may have
generated the data. That model will almost always have parameter values that
need to be specified. We can refer to this specified model (with particular
parameter values) as a hypothesis, H. The likelihood is then:

(eq. 2.1)
L(H|D) = Pr(D|H)

Here, L and Pr stand for likelihood and probability, D for the data, and H for the
hypothesis, which again includes both the model being considered and a set of
parameter values. The | symbol stands for “given,” so equation 2.1 can be read
as “the likelihood of the hypothesis given the data is equal to the probability
of the data given the hypothesis.” In other words, the likelihood represents the
probability under a given model and parameter values that we would obtain the
data that we actually see.

For any given model, using different parameter values will generally change the
likelihood. As you might guess, we favor parameter values that give us the
highest probability of obtaining the data that we see. One way to estimate
parameters from data, then, is by finding the parameter values that maximize
the likelihood; that is, the parameter values that give the highest likelihood, and
the highest probability of obtaining the data. These estimates are then referred
to as maximum likelihood (ML) estimates. In an ML framework, we suppose
that the hypothesis that has the best fit to the data is the one that has the
highest probability of having generated that data.

For the example above, we need to calculate the likelihood as the probability of
obtaining heads 63 out of 100 lizard flips, given some model of lizard flipping. In
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general, we can write the likelihood for any combination of H “successes” (flips
that give heads) out of n trials. We will also have one parameter, pH , which will
represent the probability of “success,” that is, the probability that any one flip
comes up heads. We can calculate the likelihood of our data using the binomial
theorem:

(eq. 2.2)

L(H|D) = Pr(D|p) =
(

n

H

)
pH

H(1 − pH)n−H

In the example given, n = 100 and H = 63, so:

(eq. 2.3)

L(H|D) =
(

100
63

)
p63

H (1 − pH)37

Figure 2.2. Likelihood surface for the parameter pH , given a coin that has been
flipped as heads 63 times out of 100. Image by the author, can be reused under
a CC-BY-4.0 license.
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We can make a plot of the likelihood, L, as a function of pH (Figure 2.2). When
we do this, we see that the maximum likelihood value of pH , which we can call
p̂H , is at p̂H = 0.63. This is the “brute force” approach to finding the maximum
likelihood: try many different values of the parameters and pick the one with
the highest likelihood. We can do this much more efficiently using numerical
methods as described in later chapters in this book.

We could also have obtained the maximum likelihood estimate for pH through
differentiation. This problem is much easier if we work with the ln-likelihood
rather than the likelihood itself (note that whatever value of pH that maximizes
the likelihood will also maximize the ln-likelihood, because the log function is
strictly increasing). So:

(eq. 2.4)

ln L = ln
(

n

H

)
+ H ln pH + (n − H) ln (1 − pH)

Note that the natural log (ln) transformation changes our equation from a power
function to a linear function that is easy to solve. We can differentiate:

(eq. 2.5)
d ln L

dpH
= H

pH
− (n − H)

(1 − pH)

The maximum of the likelihood represents a peak, which we can find by setting
the derivative d ln L

dpH
to zero. We then find the value of pH that solves that

equation, which will be our estimate p̂H . So we have:

(eq. 2.6)
H
p̂H

− n−H
1−p̂H

= 0
H
p̂H

= n−H
1−p̂H

H(1 − p̂H) = p̂H(n − H)
H − Hp̂H = np̂H − Hp̂H

H = np̂H

p̂H = H/n

Notice that, for our simple example, H/n = 63/100 = 0.63, which is exactly
equal to the maximum likelihood from figure 2.2.

Maximum likelihood estimates have many desirable statistical properties. It
is worth noting, however, that they will not always return accurate parameter
estimates, even when the data is generated under the actual model we are
considering. In fact, ML parameters can sometimes be biased. To understand
what this means, we need to formally introduce two new concepts: bias and
precision. Imagine that we were to simulate datasets under some model A with
parameter a. For each simulation, we then used ML to estimate the parameter â
for the simulated data. The precision of our ML estimate tells us how different,
on average, each of our estimated parameters âi are from one another. Precise
estimates are estimated with less uncertainty. Bias, on the other hand, measures
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how close our estimates âi are to the true value a. If our ML parameter estimate
is biased, then the average of the âi will differ from the true value a. It is not
uncommon for ML estimates to be biased in a way that depends on sample size,
so that the estimates get closer to the truth as sample size increases, but can be
quite far off in a particular direction when the number of data points is small
compared to the number of parameters being estimated.

In our example of lizard flipping, we estimated a parameter value of p̂H = 0.63.
For the particular case of estimating the parameter of a binomial distribution,
our ML estimate is known to be unbiased. And this estimate is different from
0.5 – which was our expectation under the null hypothesis. So is this lizard fair?
Or, alternatively, can we reject the null hypothesis that pH = 0.5? To evaluate
this, we need to use model selection.

Section 2.3b: The likelihood ratio test

Model selection involves comparing a set of potential models and using some
criterion to select the one that provides the “best” explanation of the data.
Different approaches define “best” in different ways. I will first discuss the
simplest, but also the most limited, of these techniques, the likelihood ratio
test. Likelihood ratio tests can only be used in one particular situation: to
compare two models where one of the models is a special case of the other.
This means that model A is exactly equivalent to the more complex model B
with parameters restricted to certain values. We can always identify the simpler
model as the model with fewer parameters. For example, perhaps model B has
parameters x, y, and z that can take on any values. Model A is the same as
model B but with parameter z fixed at 0. That is, A is the special case of B
when parameter z = 0. This is sometimes described as model A is nested within
model B, since every possible version of model A is equal to a certain case of
model B, but model B also includes more possibilities.

For likelihood ratio tests, the null hypothesis is always the simpler of the two
models. We compare the data to what we would expect if the simpler (null)
model were correct.

For example, consider again our example of flipping a lizard. One model is that
the lizard is “fair:” that is, that the probability of heads is equal to 1/2. A
different model might be that the probability of heads is some other value p,
which could be 1/2, 1/3, or any other value between 0 and 1. Here, the latter
(complex) model has one additional parameter, pH , compared to the former
(simple) model; the simple model is a special case of the complex model when
pH = 1/2.

For such nested models, one can calculate the likelihood ratio test statistic as

(eq. 2.7)
∆ = 2 · ln L1

L2
= 2 · (ln L1 − ln L2)
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Here, ∆ is the likelihood ratio test statistic, L2 the likelihood of the more
complex (parameter rich) model, and L1 the likelihood of the simpler model.
Since the models are nested, the likelihood of the complex model will always
be greater than or equal to the likelihood of the simple model. This is a direct
consequence of the fact that the models are nested. If we find a particular
likelihood for the simpler model, we can always find a likelihood equal to that
for the complex model by setting the parameters so that the complex model is
equivalent to the simple model. So the maximum likelihood for the complex
model will either be that value, or some higher value that we can find through
searching the parameter space. This means that the test statistic ∆ will never
be negative. In fact, if you ever obtain a negative likelihood ratio test statistic,
something has gone wrong – either your calculations are wrong, or you have not
actually found ML solutions, or the models are not actually nested.

To carry out a statistical test comparing the two models, we compare the test
statistic ∆ to its expectation under the null hypothesis. When sample sizes
are large, the null distribution of the likelihood ratio test statistic follows a
chi-squared (χ2) distribution with degrees of freedom equal to the difference
in the number of parameters between the two models. This means that if
the simpler hypothesis were true, and one carried out this test many times on
large independent datasets, the test statistic would approximately follow this
χ2 distribution. To reject the simpler (null) model, then, one compares the test
statistic with a critical value derived from the appropriate χ2 distribution. If
the test statistic is larger than the critical value, one rejects the null hypothesis.
Otherwise, we fail to reject the null hypothesis. In this case, we only need to
consider one tail of the χ2 test, as every deviation from the null model will push
us towards higher ∆ values and towards the right tail of the distribution.

For the lizard flip example above, we can calculate the ln-likelihood under a
hypothesis of pH = 0.5 as:

(eq. 2.8)

ln L1 = ln
( 100

63
)

+ 63 · ln 0.5 + (100 − 63) · ln (1 − 0.5)
ln L1 = −5.92

We can compare this to the likelihood of our maximum-likelihood estimate :

(eq. 2.9)

ln L2 = ln
( 100

63
)

+ 63 · ln 0.63 + (100 − 63) · ln (1 − 0.63)
ln L2 = −2.50

We then calculate the likelihood ratio test statistic:
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(eq. 2.10)
∆ = 2 · (ln L2 − ln L1)
∆ = 2 · (−2.50 − −5.92)
∆ = 6.84

If we compare this to a χ2 distribution with one d.f., we find that P = 0.009.
Because this P-value is less than the threshold of 0.05, we reject the null hy-
pothesis, and support the alternative. We conclude that this is not a fair lizard.
As you might expect, this result is consistent with our answer from the bino-
mial test in the previous section. However, the approaches are mathematically
different, so the two P-values are not identical.

Although described above in terms of two competing hypotheses, likelihood ratio
tests can be applied to more complex situations with more than two competing
models. For example, if all of the models form a sequence of increasing com-
plexity, with each model a special case of the next more complex model, one
can compare each pair of hypotheses in sequence, stopping the first time the
test statistic is non-significant. Alternatively, in some cases, hypotheses can be
placed in a bifurcating choice tree, and one can proceed from simple to complex
models down a particular path of paired comparisons of nested models. This
approach is commonly used to select models of DNA sequence evolution (Posada
and Crandall 1998).

Section 2.3c: The Akaike information criterion (AIC)

You might have noticed that the likelihood ratio test described above has some
limitations. Especially for models involving more than one parameter, ap-
proaches based on likelihood ratio tests can only do so much. For example,
one can compare a series of models, some of which are nested within others,
using an ordered series of likelihood ratio tests. However, results will often de-
pend strongly on the order in which tests are carried out. Furthermore, often
we want to compare models that are not nested, as required by likelihood ratio
tests. For these reasons, another approach, based on the Akaike Information
Criterion (AIC), can be useful.

The AIC value for a particular model is a simple function of the likelihood L
and the number of parameters k:

(eq. 2.11)
AIC = 2k − 2lnL

This function balances the likelihood of the model and the number of parame-
ters estimated in the process of fitting the model to the data. One can think of
the AIC criterion as identifying the model that provides the most efficient way
to describe patterns in the data with few parameters. However, this shorthand
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description of AIC does not capture the actual mathematical and philosoph-
ical justification for equation (2.11). In fact, this equation is not arbitrary;
instead, its exact trade-off between parameter numbers and log-likelihood dif-
ference comes from information theory (for more information, see Burnham and
Anderson 2003, Akaike (1998)).

The AIC equation (2.11) above is only valid for quite large sample sizes relative
to the number of parameters being estimated (for n samples and k parameters,
n/k > 40). Most empirical data sets include fewer than 40 independent data
points per parameter, so a small sample size correction should be employed:

(eq. 2.12)

AICC = AIC + 2k(k + 1)
n − k − 1

This correction penalizes models that have small sample sizes relative to the
number of parameters; that is, models where there are nearly as many parame-
ters as data points. As noted by Burnham and Anderson (2003), this correction
has little effect if sample sizes are large, and so provides a robust way to correct
for possible bias in data sets of any size. I recommend always using the small
sample size correction when calculating AIC values.

To select among models, one can then compare their AICc scores, and choose
the model with the smallest value. It is easier to make comparisons in AICc

scores between models by calculating the difference, ∆AICc. For example, if
you are comparing a set of models, you can calculate ∆AICc for model i as:

(eq. 2.13)
∆AICci

= AICci
− AICcmin

where AICci is the AICc score for model i and AICcmin is the minimum AICc

score across all of the models.

As a broad rule of thumb for comparing AIC values, any model with a ∆AICci

of less than four is roughly equivalent to the model with the lowest AICc value.
Models with ∆AICci

between 4 and 8 have little support in the data, while any
model with a ∆AICci

greater than 10 can safely be ignored.

Additionally, one can calculate the relative support for each model using Akaike
weights. The weight for model i compared to a set of competing models is
calculated as:

(eq. 2.14)

wi = e−∆AICci
/2∑

i e−∆AICci
/2

The weights for all models under consideration sum to 1, so the wi for each
model can be viewed as an estimate of the level of support for that model in
the data compared to the other models being considered.

25



Returning to our example of lizard flipping, we can calculate AICc scores for
our two models as follows:

(eq. 2.15)

AIC1 = 2k1 − 2lnL1 = 2 · 0 − 2 · −5.92
AIC1 = 11.8
AIC2 = 2k2 − 2lnL2 = 2 · 1 − 2 · −2.50
AIC2 = 7.0

Our example is a bit unusual in that model one has no estimated parameters;
this happens sometimes but is not typical for biological applications. We can
correct these values for our sample size, which in this case is n = 100 lizard
flips:

(eq. 2.16)

AICc1 = AIC1 + 2k1(k1+1)
n−k1−1

AICc1 = 11.8 + 2·0(0+1)
100−0−1

AICc1 = 11.8
AICc2 = AIC2 + 2k2(k2+1)

n−k2−1
AICc2 = 7.0 + 2·1(1+1)

100−1−1
AICc2 = 7.0

Notice that, in this particular case, the correction did not affect our AIC values,
at least to one decimal place. This is because the sample size is large relative
to the number of parameters. Note that model 2 has the smallest AICc score
and is thus the model that is best supported by the data. Noting this, we can
now convert these AICc scores to a relative scale:

(eq. 2.17)

∆AICc1 = AICc1 − AICcmin

= 11.8 − 7.0
= 4.8

∆AICc2 = AICc2 − AICcmin

= 7.0 − 7.0
= 0

Note that the ∆AICci
for model 1 is greater than four, suggesting that this

model (the “fair” lizard) has little support in the data. This is again consistent
with all of the results that we’ve obtained so far using both the binomial test
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and the likelihood ratio test. Finally, we can use the relative AICc scores to
calculate Akaike weights:

(eq. 2.18) ∑
i e−∆i/2 = e−∆1/2 + e−∆2/2

= e−4.8/2 + e−0/2

= 0.09 + 1
= 1.09

w1 = e−∆AICc1 /2∑
i

e−∆AICci
/2

= 0.09
1.09

= 0.08

w2 = e−∆AICc2 /2∑
i

e−∆AICci
/2

= 1.00
1.09

= 0.92

Our results are again consistent with the results of the likelihood ratio test. The
relative likelihood of an unfair lizard is 0.92, and we can be quite confident that
our lizard is not a fair flipper.

AIC weights are also useful for another purpose: we can use them to get model-
averaged parameter estimates. These are parameter estimates that are com-
bined across different models proportional to the support for those models. As
a thought example, imagine that we are considering two models, A and B, for
a particular dataset. Both model A and model B have the same parameter p,
and this is the parameter we are particularly interested in. In other words, we
do not know which model is the best model for our data, but what we really
need is a good estimate of p. We can do that using model averaging. If model
A has a high AIC weight, then the model-averaged parameter estimate for p
will be very close to our estimate of p under model A; however, if both mod-
els have about equal support then the parameter estimate will be close to the
average of the two different estimates. Model averaging can be very useful in
cases where there is a lot of uncertainty in model choice for models that share
parameters of interest. Sometimes the models themselves are not of interest,
but need to be considered as possibilities; in this case, model averaging lets us
estimate parameters in a way that is not as strongly dependent on our choice
of models.
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Section 2.4: Bayesian statistics

Section 2.4a: Bayes Theorem

Recent years have seen tremendous growth of Bayesian approaches in recon-
structing phylogenetic trees and estimating their branch lengths. Although
there are currently only a few Bayesian comparative methods, their number
will certainly grow as comparative biologists try to solve more complex problems.
In a Bayesian framework, the quantity of interest is the posterior probability,
calculated using Bayes’ theorem:

(eq. 2.19)

Pr(H|D) = Pr(D|H) · Pr(H)
Pr(D)

The benefit of Bayesian approaches is that they allow us to estimate the prob-
ability that the hypothesis is true given the observed data, Pr(H|D). This
is really the sort of probability that most people have in mind when they are
thinking about the goals of their study. However, Bayes theorem also reveals
a cost of this approach. Along with the likelihood, Pr(D|H), one must also
incorporate prior knowledge about the probability that any given hypothesis is
true - Pr(H). This represents the prior belief that a hypothesis is true, even
before consideration of the data at hand. This prior probability must be explic-
itly quantified in all Bayesian statistical analyses. In practice, scientists often
seek to use “uninformative” priors that have little influence on the posterior dis-
tribution - although even the term “uninformative” can be confusing, because
the prior is an integral part of a Bayesian analysis. The term Pr(D) is also an
important part of Bayes theorem, and can be calculated as the probability of
obtaining the data integrated over the prior distributions of the parameters:

(eq. 2.20)

Pr(D) =
∫

H

Pr(H|D)Pr(H)dH

However, Pr(D) is constant when comparing the fit of different models for a
given data set and thus has no influence on Bayesian model selection under most
circumstances (and all the examples in this book).

In our example of lizard flipping, we can do an analysis in a Bayesian framework.
For model 1, there are no free parameters. Because of this, Pr(H) = 1 and
Pr(D|H) = P (D), so that Pr(H|D) = 1. This may seem strange but what the
result means is that our data has no influence on the structure of the model.
We do not learn anything about a model with no free parameters by collecting
data!
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If we consider model 2 above, the parameter pH must be estimated. We can
set a uniform prior between 0 and 1 for pH , so that f(pH) = 1 for all pH in the
interval [0,1]. We can also write this as “our prior for ph is U(0,1)”. Then:

(eq. 2.21)

Pr(H|D) = Pr(D|H) · Pr(H)
Pr(D)

= P (H|pH , N)f(pH)∫ 1
0 P (H|pH , N)f(ph)dpH

Next we note that Pr(D|H) is the likelihood of our data given the model, which
is already stated above as equation 2.2. Plugging this into our equation, we have:

(eq. 2.22)

Pr(H|D) =
(

N
H

)
pH

H(1 − pH)N−H∫ 1
0

(
N
H

)
pH

H(1 − pH)N−HdpH

This ugly equation actually simplifies to a beta distribution, which can be ex-
pressed more simply as:

(eq. 2.23)

Pr(H|D) = (N + 1)!
H!(N − H)!

pH
H(1 − pH)N−H

We can compare this posterior distribution of our parameter estimate, pH , given
the data, to our uniform prior (Figure 2.3). If you inspect this plot, you see
that the posterior distribution is very different from the prior – that is, the data
have changed our view of the values that parameters should take. Again, this
result is qualitatively consistent with both the frequentist and ML approaches
described above. In this case, we can see from the posterior distribution that
we can be quite confident that our parameter pH is not 0.5.

As you can see from this example, Bayes theorem lets us combine our prior
belief about parameter values with the information from the data in order to
obtain a posterior. These posterior distributions are very easy to interpret, as
they express the probability of the model parameters given our data. However,
that clarity comes at a cost of requiring an explicit prior. Later in the book we
will learn how to use this feature of Bayesian statistics to our advantage when
we actually do have some prior knowledge about parameter values.

Section 2.4b: Bayesian MCMC

The other main tool in the toolbox of Bayesian comparative methods is the use
of Markov-chain Monte Carlo (MCMC) tools to calculate posterior probabili-
ties. MCMC techniques use an algorithm that uses a “chain” of calculations
to sample the posterior distribution. MCMC requires calculation of likelihoods
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Figure 2.3. Bayesian prior (dotted line) and posterior (solid line) distributions
for lizard flipping. Image by the author, can be reused under a CC-BY-4.0
license.
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but not complicated mathematics (e.g. integration of probability distributions,
as in equation 2.22), and so represents a more flexible approach to Bayesian
computation. Frequently, the integrals in equation 2.21 are intractable, so that
the most efficient way to fit Bayesian models is by using MCMC. Also, setting
up an MCMC is, in my experience, easier than people expect!

An MCMC analysis requires that one constructs and samples from a Markov
chain. A Markov chain is a random process that changes from one state to
another with certain probabilities that depend only on the current state of the
system, and not what has come before. A simple example of a Markov chain is
the movement of a playing piece in the game Chutes and Ladders; the position
of the piece moves from one square to another following probabilities given by
the dice and the layout of the game board. The movement of the piece from
any square on the board does not depend on how the piece got to that square.

Some Markov chains have an equilibrium distribution, which is a stable probabil-
ity distribution of the model’s states after the chain has run for a very long time.
For Bayesian analysis, we use a technique called a Metropolis-Hasting algorithm
to construct a special Markov chain that has an equilibrium distribution that is
the same as the Bayesian posterior distribution of our statistical model. Then,
using a random simulation on this chain (this is the Markov-chain Monte Carlo,
MCMC), we can sample from the posterior distribution of our model.

In simpler terms: we use a set of well-defined rules. These rules let us walk
around parameter space, at each step deciding whether to accept or reject the
next proposed move. Because of some mathematical proofs that are beyond the
scope of this chapter, these rules guarantee that we will eventually be accepting
samples from the Bayesian posterior distribution - which is what we seek.

The following algorithm uses a Metropolis-Hastings algorithm to carry out a
Bayesian MCMC analysis with one free parameter:

1. Get a starting parameter value.
• Sample a starting parameter value, p0, from the prior distribution.

2. Starting with i = 1, propose a new parameter for generation i.
• Given the current parameter value, p, select a new proposed param-

eter value, p′, using the proposal density Q(p′|p).
3. Calculate three ratios.

• a. The prior odds ratio. This is the ratio of the probability of drawing
the parameter values p and p′ from the prior (eq. 2.24).

Rprior = P (p′)
P (p)

• b. The proposal density ratio. This is the ratio of probability of
proposals going from p to p′ and the reverse. Often, we purposefully
construct a proposal density that is symmetrical. When we do that,
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Q(p′|p) = Q(p|p′) and a2 = 1, simplifying the calculations (eq. 2.25).

Rproposal = Q(p′|p)
Q(p|p′)

• c. The likelihood ratio. This is the ratio of probabilities of the data
given the two different parameter values (eq. 2.26).

Rlikelihood = L(p′|D)
L(p|D)

= P (D|p′)
P (D|p)

4. Multiply. Find the product of the prior odds, proposal density ratio, and
the likelihood ratio (eq. 2.27).

Raccept = Rprior · Rproposal · Rlikelihood

5. Accept or reject. Draw a random number x from a uniform distribution
between 0 and 1. If x < Raccept, accept the proposed value of p′ (pi = p′);
otherwise reject, and retain the current value p (pi = p).

6. Repeat. Repeat steps 2-5 a large number of times.

Carrying out these steps, one obtains a set of parameter values, pi, where i is
from 1 to the total number of generations in the MCMC. Typically, the chain
has a “burn-in” period at the beginning. This is the time before the chain has
reached a stationary distribution, and can be observed when parameter values
show trends through time and the likelihood for models has yet to plateau.
If you eliminate this “burn-in” period, then, as discussed above, each step in
the chain is a sample from the posterior distribution. We can summarize the
posterior distributions of the model parameters in a variety of ways; for example,
by calculating means, 95% confidence intervals, or histograms.

We can apply this algorithm to our coin-flipping example. We will consider
the same prior distribution, U(0, 1), for the parameter p. We will also define
a proposal density, Q(p′|p) U(p − ϵ, p + ϵ). That is, we will add or subtract a
small number (ϵ ≤ 0.01) to generate proposed values of p′ given p.

To start the algorithm, we draw a value of p from the prior. Let’s say for
illustrative purposes that the value we draw is 0.60. This becomes our current
parameter estimate. For step two, we propose a new value, p′, by drawing from
our proposal distribution. We can use ϵ = 0.01 so the proposal distribution
becomes U(0.59, 0.61). Let’s suppose that our new proposed value p′ = 0.595.

We then calculate our three ratios. Here things are simpler than you might have
expected for two reasons. First, recall that our prior probability distribution is
U(0, 1). The density of this distribution is a constant (1.0) for all values of p
and p′. Because of this, the prior odds ratio for this example is always:
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(eq. 2.28)

Rprior = P (p′)
P (p)

= 1
1

= 1

Similarly, because our proposal distribution is symmetrical, Q(p′|p) = Q(p|p′)
and Rproposal = 1. That means that we only need to calculate the likelihood
ratio, Rlikelihood for p and p′. We can do this by plugging our values for p (or
p′) into equation 2.2:

(eq. 2.29)

P (D|p) =
(

N

H

)
pH(1 − p)N−H =

(
100
63

)
0.663(1 − 0.6)100−63 = 0.068

Likewise, (eq. 2.30)

P (D|p′) =
(

N

H

)
p′H(1 − p′)N−H =

(
100
63

)
0.59563(1 − 0.595)100−63 = 0.064

The likelihood ratio is then:

(eq. 2.31)

Rlikelihood = P (D|p′)
P (D|p)

= 0.064
0.068

= 0.94

We can now calculate Raccept = Rprior · Rproposal · Rlikelihood = 1 · 1 · 0.94 = 0.94.
We next choose a random number between 0 and 1 – say that we draw x = 0.34.
We then notice that our random number x is less than or equal to Raccept, so
we accept the proposed value of p′. If the random number that we drew were
greater than 0.94, we would reject the proposed value, and keep our original
parameter value p = 0.60 going into the next generation.

If we repeat this procedure a large number of times, we will obtain a long chain
of values of p. You can see the results of such a run in Figure 2.4. In panel
A, I have plotted the likelihoods for each successive value of p. You can see
that the likelihoods increase for the first ~1000 or so generations, then reach
a plateau around lnL = −3. Panel B shows a plot of the values of p, which
rapidly converge to a stable distribution around p = 0.63. We can also plot
a histogram of these posterior estimates of p. In panel C, I have done that –
but with a twist. Because the MCMC algorithm creates a series of parameter
estimates, these numbers show autocorrelation – that is, each estimate is similar
to estimates that come just before and just after. This autocorrelation can
cause problems for data analysis. The simplest solution is to subsample these
values, picking only, say, one value every 100 generations. That is what I have
done in the histogram in panel C. This panel also includes the analytic posterior
distribution that we calculated above – notice how well our Metropolis-Hastings
algorithm did in reconstructing this distribution! For comparative methods in
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general, analytic posterior distributions are difficult or impossible to construct,
so approximation using MCMC is very common.

This simple example glosses over some of the details of MCMC algorithms, but
we will get into those details later, and there are many other books that treat
this topic in great depth (e.g. Christensen et al. 2010). The point is that we
can solve some of the challenges involved in Bayesian statistics using numerical
“tricks” like MCMC, that exploit the power of modern computers to fit models
and estimate model parameters.

Section 2.4c: Bayes factors

Now that we know how to use data and a prior to calculate a posterior dis-
tribution, we can move to the topic of Bayesian model selection. We already
learned one general method for model selection using AIC. We can also do model
selection in a Bayesian framework. The simplest way is to calculate and then
compare the posterior probabilities for a set of models under consideration. One
can do this by calculating Bayes factors:

(eq. 2.32)

B12 = Pr(D|H1)
Pr(D|H2)

Bayes factors are ratios of the marginal likelihoods P (D|H) of two competing
models. They represent the probability of the data averaged over the posterior
distribution of parameter estimates. It is important to note that these marginal
likelihoods are different from the likelihoods used above for AIC model compar-
ison in an important way. With AIC and other related tests, we calculate the
likelihoods for a given model and a particular set of parameter values – in the
coin flipping example, the likelihood for model 2 when pH = 0.63. By contrast,
Bayes factors’ marginal likelihoods give the probability of the data averaged over
all possible parameter values for a model, weighted by their prior probability.

Because of the use of marginal likelihoods, Bayes factor allows us to do model
selection in a way that accounts for uncertainty in our parameter estimates –
again, though, at the cost of requiring explicit prior probabilities for all model
parameters. Such comparisons can be quite different from likelihood ratio tests
or comparisons of AICc scores. Bayes factors represent model comparisons that
integrate over all possible parameter values rather than comparing the fit of
models only at the parameter values that best fit the data. In other words,
AICc scores compare the fit of two models given particular estimated values for
all of the parameters in each of the models. By contrast, Bayes factors make a
comparison between two models that accounts for uncertainty in their parameter
estimates. This will make the biggest difference when some parameters of one or
both models have relatively wide uncertainty. If all parameters can be estimated
with precision, results from both approaches should be similar.

34



Figure 2.4. Bayesian MCMC from lizard flipping example. Image by the author,
can be reused under a CC-BY-4.0 license.
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Calculation of Bayes factors can be quite complicated, requiring integration
across probability distributions. In the case of our coin-flipping problem, we
have already done that to obtain the beta distribution in equation 2.22. We can
then calculate Bayes factors to compare the fit of two competing models. Let’s
compare the two models for coin flipping considered above: model 1, where
pH = 0.5, and model 2, where pH = 0.63. Then:

(eq. 2.33)

Pr(D|H1) =
(100

63
)
0.50.63(1 − 0.5)100−63

= 0.00270
Pr(D|H2) =

∫ 1
p=0

(100
63

)
p63(1 − p)100−63

=
(100

63
)
β(38, 64)

= 0.0099
B12 = 0.0099

0.00270
= 3.67

In the above example, β(x, y) is the Beta function. Our calculations show that
the Bayes factor is 3.67 in favor of model 2 compared to model 1. This is
typically interpreted as substantial (but not decisive) evidence in favor of model
2. Again, we can be reasonably confident that our lizard is not a fair flipper.

In the lizard flipping example we can calculate Bayes factors exactly because
we know the solution to the integral in equation 2.33. However, if we don’t
know how to solve this equation (a typical situation in comparative methods),
we can still approximate Bayes factors from our MCMC runs. Methods to do
this, including arrogance sampling and stepping stone models (Xie et al. 2011;
Perrakis et al. 2014), are complex and beyond the scope of this book. However,
one common method for approximating Bayes Factors involves calculating the
harmonic mean of the likelihoods over the MCMC chain for each model. The
ratio of these two likelihoods is then used as an approximation of the Bayes
factor (Newton and Raftery 1994). Unfortunately, this method is extremely
unreliable, and probably should never be used (see Neal 2008 for more details).

Section 2.5: AIC versus Bayes

Before I conclude this section, I want to highlight another difference in the
way that AIC and Bayes approaches deal with model complexity. This relates
to a subtle philosophical distinction that is controversial among statisticians
themselves so I will only sketch out the main point; see a real statistics book
like Burnham and Anderson (2003) or Gelman et al. (2013) for further details.
When you compare Bayes factors, you assume that one of the models you are
considering is actually the true model that generated your data, and calculate
posterior probabilities based on that assumption. By contrast, AIC assumes
that reality is more complex than any of your models, and you are trying to
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identify the model that most efficiently captures the information in your data.
That is, even though both techniques are carrying out model selection, the basic
philosophy of how these models are being considered is very different: choosing
the best of several simplified models of reality, or choosing the correct model
from a set of alternatives.

The debate between Bayesian and likelihood-based approaches often centers
around the use of priors in Bayesian statistics, but the distinction between
models and “reality” is also important. More specifically, it is hard to imagine
a case in comparative biology where one would be justified in the Bayesian
assumption that one has identified the true model that generated the data. This
also explains why AIC-based approaches typically select more complex models
than Bayesian approaches. In an AIC framework, one assumes that reality is
very complex and that models are approximations; the goal is to figure out how
much added model complexity is required to efficiently explain the data. In
cases where the data are actually generated under a very simple model, AIC
may err in favor of overly complex models. By contrast, Bayesian analyses
assume that one of the models being considered is correct. This type of analysis
will typically behave appropriately when the data are generated under a simple
model, but may be unpredictable when data are generated by processes that are
not considered by any of the models. However, Bayesian methods account for
uncertainty much better than AIC methods, and uncertainty is a fundamental
aspect of phylogenetic comparative methods.

In summary, Bayesian approaches are useful tools for comparative biology, es-
pecially when combined with MCMC computational techniques. They require
specification of a prior distribution and assume that the “true” model is among
those being considered, both of which can be drawbacks in some situations.
A Bayesian framework also allows us to much more easily account for phylo-
genetic uncertainty in comparative analysis. Many comparative biologists are
pragmatic, and use whatever methods are available to analyze their data. This is
a reasonable approach but one should remember the assumptions that underlie
any statistical result.

Section 2.6: Models and comparative methods

For the rest of this book I will introduce several models that can be applied to
evolutionary data. I will discuss how to simulate evolutionary processes under
these models, how to compare data to these models, and how to use model
selection to discriminate amongst them. In each section, I will describe standard
statistical tests (when available) along with ML and Bayesian approaches.

One theme in the book is that I emphasize fitting models to data and estimating
parameters. I think that this approach is very useful for the future of the
field of comparative statistics for three main reasons. First, it is flexible; one
can easily compare a wide range of competing models to your data. Second,
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it is extendable; one can create new models and automatically fit them into
a preexisting framework for data analysis. Finally, it is powerful; a model
fitting approach allows us to construct comparative tests that relate directly to
particular biological hypotheses.

Footnotes

1: I assume here that you have little interest in organisms other than lizards.

2: And, often, concludes that we just “need more data” to get the answer that
we want.

3: Especially in fields like genomics where multiple testing and massive Bon-
ferroni corrections are common; one can only wonder at the legions of type II
errors that are made under such circumstances.

38



Chapter 3: Introduction to Brownian Motion

Section 3.1: Introduction

Squamates, the group that includes snakes and lizards, is exceptionally diverse.
Since sharing a common ancestor between 150 and 210 million years ago (Hedges
and Kumar 2009), squamates have diversified to include species that are very
large and very small; herbivores and carnivores; species with legs and species
that are legless. How did that diversity of species’ traits evolve? How did these
characters first come to be, and how rapidly did they change to explain the
diversity that we see on earth today? In this chapter, we will begin to discuss
models for the evolution of species’ traits.

Imagine that you want to use statistical approaches to understand how traits
change through time. To do that, you need to have an exact mathematical
specification of how evolution takes place. Obviously there are a wide variety
of models of trait evolution, from simple to complex. For example, you might
create a model where a trait starts with a certain value and has some constant
probability of changing in any unit of time. Alternatively, you might make a
model that is more detailed and explicit, and considers a large set of individuals
in a population. You could assign genotypes to each individual and allow the
population to evolve through reproduction and natural selection.

In this chapter – and in comparative methods as a whole – the models we will
consider will be much closer to the first of these two models. However, there
are still important connections between these simple models and more realistic
models of trait evolution (see chapter five).

In the next six chapters, I will discuss models for two different types of characters.
In this chapter and chapters four, five, and six, I will consider traits that follow
continuous distributions – that is, traits that can have real-numbered values. For
example, body mass in kilograms is a continuous character. I will discuss the
most commonly used model for these continuous characters, Brownian motion,
in this chapter and the next, while chapter five covers analyses of multivariate
Brownian motion. We will go beyond Brownian motion in chapter six. In
chapter seven and the chapters that immediately follow, I will cover discrete
characters, characters that can occupy one of a number of distinct character
states (for example, species of squamates can either be legless or have legs).

Section 3.2: Properties of Brownian Motion

We can use Brownian motion to model the evolution of a continuously valued
trait through time. Brownian motion is an example of a “random walk” model
because the trait value changes randomly, in both direction and distance, over
any time interval. The statistical process of Brownian motion was originally
invented to describe the motion of particles suspended in a fluid. To me this is

39



a bit hard to picture, but the logic applies equally well to the movement of a
large ball over a crowd in a stadium. When the ball is over the crowd, people
push on it from many directions. The sum of these many small forces determine
the movement of the ball. Again, the movement of the ball can be modeled
using Brownian motion1.

The core idea of this example is that the motion of the object is due to the
sum of a large number of very small, random forces. This idea is a key part of
biological models of evolution under Brownian motion. It is worth mentioning
that even though Brownian motion involves change that has a strong random
component, it is incorrect to equate Brownian motion models with models of
pure genetic drift (as explained in more detail below).

Brownian motion is a popular model in comparative biology because it captures
the way traits might evolve under a reasonably wide range of scenarios. However,
perhaps the main reason for the dominance of Brownian motion as a model
is that it has some very convenient statistical properties that allow relatively
simple analyses and calculations on trees. I will use some simple simulations to
show how the Brownian motion model behaves. I will then list the three critical
statistical properties of Brownian motion, and explain how we can use these
properties to apply Brownian motion models to phylogenetic comparative trees.

When we model evolution using Brownian motion, we are typically discussing
the dynamics of the mean character value, which we will denote as z̄, in a pop-
ulation. That is, we imagine that you can measure a sample of the individuals
in a population and estimate the mean average trait value. We will denote the
mean trait value at some time t as z̄(t). We can model the mean trait value
through time with a Brownian motion process.

Brownian motion models can be completely described by two parameters. The
first is the starting value of the population mean trait, z̄(0). This is the mean
trait value that is seen in the ancestral population at the start of the simulation,
before any trait change occurs. The second parameter of Brownian motion is
the evolutionary rate parameter, σ2. This parameter determines how fast traits
will randomly walk through time.

At the core of Brownian motion is the normal distribution. You might know
that a normal distribution can be described by two parameters, the mean and
variance. Under Brownian motion, changes in trait values over any interval of
time are always drawn from a normal distribution with mean 0 and variance
proportional to the product of the rate of evolution and the length of time
(variance = σ2t). As I will show later, we can simulate change under Brownian
motion model by drawing from normal distributions. Another way to say this
more simply is that we can always describe how much change to expect under
Brownian motion using normal distributions. These normal distributions for
expected changes have a mean of zero and get wider as the time interval we
consider gets longer.

A few simulations will illustrate the behavior of Brownian motion. Figure 3.1
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shows sets of Brownian motion run over three different time periods (t = 100,
500, and 1000) with the same starting value z̄(0) = 0 and rate parameter σ2 =
1. Each panel of the figure shows 100 simulations of the process over that
time period. You can see that the tip values look like normal distributions.
Furthermore, the variance among separate runs of the process increases linearly
with time. This variance among runs is greatest over the longest time intervals.
It is this variance, the variation among many independent runs of the same
evolutionary process, that we will consider throughout the next section.

Imagine that we run a Brownian motion process over a given time interval many
times, and save the trait values at the end of each of these simulations. We can
then create a statistical distribution of these character states. It might not be
obvious from figure 3.1, but the distributions of possible character states at
any time point in a Brownian walk is normal. This is illustrated in figure 3.2,
which shows the distribution of traits from 100,000 simulations with σ2 = 1
and t = 100. The tip characters from all of these simulations follow a normal
distribution with mean equal to the starting value, z̄(0) = 0, and a variance of
σ2t = 100.

Figure 3.3 shows how rate parameter σ2 affects the rate of spread of Brownian
walks. The panels show sets of 100 Brownian motion simulations run over 1000
time units for σ2 = 1 (Panel A), σ2 = 5 (Panel B), and σ2 = 25 (Panel C). You
can see that simulations with a higher rate parameter create a larger spread of
trait values among simulations over the same amount of time.

If we let z̄(t) be the value of our character at time t, then we can derive three
main properties of Brownian motion. I will list all three, then explain each in
turn.

1. E[z̄(t)] = z̄(0)
2. Each successive interval of the “walk” is independent
3. z̄(t) ∼ N(z̄(0), σ2t)

First, E[z̄(t)] = z̄(0). This means that the expected value of the character at
any time t is equal to the value of the character at time zero. Here the expected
value refers to the mean of z̄(t) over many replicates. The intuitive meaning of
this equation is that Brownian motion has no “trends,” and wanders equally in
both positive and negative directions. If you take the mean of a large number
of simulations of Brownian motion over any time interval, you will likely get a
value close to z̄(0); as you increase the sample size, this mean will tend to get
closer and closer to z̄(0).

Second, each successive interval of the “walk” is independent. Brownian motion
is a process in continuous time, and so time does not have discrete “steps.”
However, if you sample the process from time 0 to time t, and then again at
time t + ∆t, the change that occurs over these two intervals will be independent
of one another. This is true of any two non-overlapping intervals sampled from
a Brownian walk. It is worth noting that only the changes are independent, and
that the value of the walk at time t + ∆t – which we can write as z̄(t + ∆t) -
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Figure 3.1. Examples of Brownian motion. Each plot shows 100 replicates of
simulated Brownian motion with a common starting value and the same rate
parameter σ2 = 1. Simulations were run for three different times: (A) 10, (B)
50, and (C) 100 time units. The right-hand column shows a histogram of the
distribution of ending values for each set of 100 simulations. Image by the
author, can be reused under a CC-BY-4.0 license.
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Figure 3.2. Ending character values from of 100,000 Brownian motion simula-
tions with z̄(0) = 0, t = 100, and σ2 = 1. Panel (A) shows a histogram of the
outcome of these simulations, while panel (B) shows a normal Q-Q plot for these
data. If the data follow a normal distribution, the points in the Q-Q plot should
form a straight line. Image by the author, can be reused under a CC-BY-4.0
license.
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Figure 3.3. Examples of Brownian motion. Each plot shows 100 replicates of
simulated Brownian motion with a common starting value and the same time
interval t = 100. The rate parameter σ2 varies across the panels: (A) σ2 = 1
(B) σ2 = 10, and (C) σ2 = 25. The right-hand column shows a histogram of
the distribution of ending values for each set of 100 simulations. Image by the
author, can be reused under a CC-BY-4.0 license.
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is not independent of the value of the walk at time t, z̄(t). But the differences
between successive steps [e.g. z̄(t) − z̄(0) and z̄(t + ∆t) − z̄(t)] are independent
of each other and of z̄(0).

Finally, z̄(t) ∼ N(z̄(0), σ2t).That is, the value of z̄(t) is drawn from a normal
distribution with mean z̄(0) and variance σ2t. As we noted above, the parameter
σ2 is important for Brownian motion models, as it describes the rate at which
the process wanders through trait space. The overall variance of the process is
that rate times the amount of time that has elapsed.

Section 3.3: Simple Quantitative Genetics Models for
Brownian Motion

Section 3.3a: Brownian motion under genetic drift

The simplest way to obtain Brownian evolution of characters is when evolution-
ary change is neutral, with traits changing only due to genetic drift (e.g. Lande
1976). To show this, we will create a simple model. We will assume that a char-
acter is influenced by many genes, each of small effect, and that the value of the
character does not affect fitness. Finally, we assume that mutations are random
and have small effects on the character, as specified below. These assumptions
probably seem unrealistic, especially if you are thinking of a trait like the body
size of a lizard! But we will see later that we can also derive Brownian motion
under other models, some of which involve selection.

Consider the mean value of this trait, z̄, in a population with an effective popu-
lation size of Ne (this is technically the variance effective population )2. Since
there is no selection, the phenotypic character will change due only to muta-
tions and genetic drift. We can model this process in a number of ways, but
the simplest uses an “infinite alleles” model. Under this model, mutations occur
randomly and have random phenotypic effects. We assume that mutations are
drawn at random from a distribution with mean 0 and mutational variance σ2

m.
This model assumes that the number of alleles is so large that there is effectively
no chance of mutations happening to the same allele more than once - hence,
“infinite alleles.” The alleles in the population then change in frequency through
time due to genetic drift. Drift and mutation together, then, determine the
dynamics of the mean trait through time.

If we were to simulate this infinite alleles model many times, we would have a
set of evolved populations. These populations would, on average, have the same
mean trait value, but would differ from each other. Let’s try to derive how,
exactly, these populations3 evolve.

If we consider a population evolving under this model, it is not difficult to show
that the expected population phenotype after any amount of time is equal to the
starting phenotype. This is because the phenotypes don’t matter for survival
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or reproduction, and mutations are assumed to be random and symmetrical.
Thus,

(eq. 3.1)
E[z̄(t)] = z̄(0)

Note that this equation already matches the first property of Brownian motion.

Next, we need to also consider the variance of these mean phenotypes, which
we will call the between-population phenotypic variance (σ2

B). Importantly, σ2
B

is the same quantity we earlier described as the “variance” of traits over time
– that is, the variance of mean trait values across many independent “runs” of
evolutionary change over a certain time period.

To calculate σ2
B , we need to consider variation within our model populations.

Because of our simplifying assumptions, we can focus solely on additive genetic
variance within each population at some time t, which we can denote as σ2

a.
Additive genetic variance measures the total amount of genetic variation that
acts additively (i.e. the contributions of each allele add together to predict the
final phenotype). This excludes genetic variation involving interacions between
alleles, such as dominance and epistasis (see Lynch and Walsh 1998 for a more
detailed discussion). Additive genetic variance in a population will change over
time due to genetic drift (which tends to decrease σ2

a) and mutational input
(which tends to increase σ2

a). We can model the expected value of σ2
a from one

generation to the next as (Clayton and Robertson 1955; Lande 1979, 1980):

(eq. 3.2)
E[σ2

a(t + 1)] = (1 − 1
2Ne

)E[σ2
a(t)] + σ2

m

where t is the elapsed time in generations, Ne is the effective population size,
and σ2

m is the mutational variance. There are two parts to this equation. The
first, (1 − 1

2Ne
)E[σ2

a(t)], shows the decrease in additive genetic variance each
generation due to genetic drift. The rate of decrease depends on effective pop-
ulation size, Ne, and the current level of additive variation. The second part
of the equation describes how additive genetic variance increases due to new
mutations (σ2

m) each generation.

If we assume that we know the starting value at time 0, σ2
aStart, we can calculate

the expected additive genetic variance at any time t as:

(eq. 3.3)

E[σ2
a(t)] = (1 − 1

2Ne
)
t

[σ2
aStart − 2Neσ2

m] + 2Neσ2
m

Note that the first term in the above equation, (1 − 1
2Ne

)t, goes to zero as
t becomes large. This means that additive genetic variation in the evolving
populations will eventually reach an equilibrium between genetic drift and new
mutations, so that additive genetic variation stops changing from one generation
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to the next. We can find this equilibrium by taking the limit of equation 3.3 as
t becomes large.

(eq. 3.4)
lim

t→∞
E[σ2

a(t)] = 2Neσ2
m

Thus the equilibrium genetic variance depends on both population size and
mutational input.

We can now derive the between-population phenotypic variance at time t, σ2
B(t).

We will assume that σ2
a is at equilibrium and thus constant (equation 3.4). Mean

trait values in independently evolving populations will diverge from one another.
Skipping some calculus, after some time period t has elapsed, the expected
among-population variance will be (from Lande 1976):

(eq. 3.5)

σ2
B(t) = tσ2

a

Ne

Substituting the equilibrium value of σ2
a from equation 3.4 into equation 3.5

gives (Lande 1979, 1980):

(eq. 3.6)

σ2
B(t) = tσ2

a

Ne
= t · 2Neσ2

m

Ne
= 2tσ2

m

Thie equation states that the variation among two diverging populations de-
pends on twice the time since they have diverged and the rate of mutational
input. Notice that for this model, the amount of variation among populations
is independent of both the starting state of the populations and their effective
population size. This model predicts, then, that long-term rates of evolution
are dominated by the supply of new mutations to a population.

Even though we had to make particular specific assumptions for that derivation,
Lynch and Hill (1986) show that equation 3.6 is a general result that holds under
a range of models, even those that include dominance, linkage, nonrandom
mating, and other processes. Equation 3.6 is somewhat useful, but we cannot
often measure the mutational variance σ2

m for any natural populations (but see
Turelli 1984). By contrast, we sometimes do know the heritability of a particular
trait. Heritability describes the proportion of total phenotypic variation within
a population (σ2

w) that is due to additive genetic effects (σ2
a): h2 = σ2

a

σ2
w
.

We can calculate the expected trait heritability for the infinite alleles model at
mutational equilibrium. Substituting equation 3.4, we find that:

(eq. 3.7)

h2 = 2Neσ2
m

σ2
w
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So that:

(eq. 3.8)

σ2
m = h2σ2

w

2Ne

Here, h2 is heritability, Ne the effective population size, and σ2
w the within-

population phenotypic variance, which differs from σ2
a because it includes all

sources of variation within populations, including both non-additive genetic
effects and environmental effects. Substituting this expression for σ2

w into equa-
tion 3.6, we have:

(eq. 3.9)

σ2
B(t) = 2σ2

mt = h2σ2
wt

Ne

So, after some time interval t, the mean phenotype of a population has an
expected value equal to the starting value, and a variance that depends positively
on time, heritability, and trait variance, and negatively on effective population
size.

To derive this result, we had to make particular assumptions about normality
of new mutations that might seem quite unrealistic. It is worth noting that if
phenotypes are affected by enough mutations, the central limit theorem guar-
antees that the distribution of phenotypes within populations will be normal –
no matter what the underlying distribution of those mutations might be. We
also had to assume that traits are neutral, a more dubious assumption that we
relax below - where we will also show that there are other ways to get Brownian
motion evolution than just genetic drift!

Note, finally, that this quantitative genetics model predicts that traits will evolve
under a Brownian motion model. Thus, our quantitative genetics model has the
same statistical properties of Brownian motion. We only need to translate one
parameter: σ2 = h2σ2

w/Ne
4.

Section 3.3b: Brownian motion under selection

We have shown that it is possible to relate a Brownian motion model directly
to a quantitative genetics model of drift. In fact, there is some temptation to
equate the two, and conclude that traits that evolve like Brownian motion are
not under selection. However, this is incorrect. More specifically, an observation
that a trait is evolving as expected under Brownian motion is not equivalent to
saying that that trait is not under selection. This is because characters can also
evolve as a Brownian walk even if there is strong selection – as long as selection
acts in particular ways that maintain the properties of the Brownian motion
model.
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In general, the path followed by population mean trait values under mutation,
selection, and drift depend on the particular way in which these processes occur.
A variety of such models are considered by Hansen and Martins (1996). They
identify three very different models that include selection where mean traits
still evolve under an approximately Brownian model. Here I present univariate
versions of the Hansen-Martins models, for simplicity; consult the original paper
for multivariate versions. Note that all of these models require that the strength
of selection is relatively weak, or else genetic variation of the character will be
depleted by selection over time and the dynamics of trait evolution will change.

One model assumes that populations evolve due to directional selection, but the
strength and direction of selection varies randomly from one generation to the
next. We model selection each generation as being drawn from a normal distri-
bution with mean 0 and variance σ2

s . Similar to our drift model, populations
will again evolve under Brownian motion. However, in this case the Brownian
motion parameters have a different interpretation:

(eq. 3.10)

σ2
B = (h2σ2

W

Ne
+ σ2

s)t

In the particular case where variation in selection is much greater than variation
due to drift, then:

(eq. 3.11)
σ2

B ≈ σ2
s

That is, when selection is (on average) much stronger than drift, the rate of
evolution is completely dominated by the selection term. This is not that far
fetched, as many studies have shown selection in the wild that is both stronger
than drift and commonly changing in both direction and magnitude from one
generation to the next.

In a second model, Hansen and Martins (1996) consider a population subject to
strong stabilizing selection for a particular optimal value, but where the position
of the optimum itself changes randomly according to a Brownian motion process.
In this case, population means can again be described by Brownian motion, but
now the rate parameter reflects movement of the optimum rather than the action
of mutation and drift. Specifically, if we describe movement of the optimum by
a Brownian rate parameter σ2

E , then:

(eq. 3.12)
σ2

B ≈ σ2
E

To obtain this result we must assume that there is at least a little bit of stabiliz-
ing selection (at least on the order of 1/tij where tij is the number of generations
separating pairs of populations; Hansen and Martins 1996).
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Again in this case, the population is under strong selection in any one generation,
but long-term patterns of trait change can be described by Brownian motion.
The rate of the random walk is totally determined by the action of selection
rather than drift.

The important take-home point from both of these models is that the pattern of
trait evolution through time under this model still follows a Brownian motion
model, even though changes are dominated by selection and not drift. In other
words, Brownian motion evolution does not imply that characters are not under
selection!

Finally, Hansen and Martins (1996) consider the situation where populations
evolve following a trend. In this case, we get evolution that is different from
Brownian motion, but shares some key attributes. Consider a population under
constant directional selection, s, so that:

(eq. 3.13)
E[z̄(t + 1)] = z̄(t) + h2s

The variance among populations due to genetic drift after a single generation is
then:

(eq. 3.14)

σ2
B = h2σ2

w

Ne

Over some longer period of time, traits will evolve so that they have expected
mean trait value that is normal with mean:

(eq. 3.15)
E[z̄(t)] = t · (h2s)

We can also calculate variance among species as:

(eq. 3.16)

σ2
B(t) = h2σ2

wt

Ne

Note that the variance of this process is exactly identical to the variance among
populations in a pure drift model (equation 3.9). Selection only changes the
expectation for the species mean (of course, we assume that variation within
populations and heritability are constant, which will only be true if selection is
quite weak). Furthermore, with comparative methods, we are often considering
a set of species and their traits in the present day, in which case they will all
have experienced the same amount of evolutionary time (t) and have the same
expected trait value. In fact, equations 3.14 and 3.16 are exactly the same
as what we would expect under a pure-drift model in the same population, but
starting with a trait value equal to z̄(0) = t·(h2s) . That is, from the perspective
of data only on living species, these two pure drift and linear selection models
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are statistically indistinguishable. The implications of this are striking: we can
never find evidence for trends in evolution studying only living species (Slater
et al. 2012b).

In summary, we can describe three very different ways that traits might evolve
under Brownian motion – pure drift, randomly varying selection, and varying
stabilizing selection – and one model, constant directional selection, which cre-
ates patterns among extant species that are indistinguishable from Brownian
motion. And there are more possible models out there that predict the same
patterns. One can never tell these models apart by evaluating the qualitative
pattern of evolution across species - they all predict the same pattern of Brow-
nian motion evolution. The details differ, in that the models have Brownian
motion rate parameters that differ from one another and relate to measurable
quantities like population size and the strength of selection. Only by know-
ing something about these parameters can we distinguish among these possible
scenarios.

You might notice that none of these “Brownian” models are particularly detailed,
especially for modeling evolution over long time scales. You might even complain
that these models are unrealistic. It is hard to imagine a case where a trait might
be influenced only by random mutations of small effect over many alleles, or
where selection would act in a truly random way from one generation to the next
for millions of years. And you would be right! However, there are tremendous
statistical benefits to using Brownian models for comparative analyses. Many
of the results derived in this book, for example, are simple under Brownian
motion but much more complex and different under other models. And it is
also the case that some (but not all) methods are robust to modest violations
of Brownian motion, in the same way that many standard statistical analyses
are robust to minor variations of the assumptions of normality. In any case,
we will proceed with models based on Brownian motion, keeping in mind these
important caveats.

Section 3.4: Brownian motion on a phylogenetic tree

We can use the basic properties of Brownian motion model to figure out what
will happen when characters evolve under this model on the branches of a phy-
logenetic tree. First, consider evolution along a single branch with length t1
(Figure 3.4A). In this case, we can model simple Brownian motion over time t1
and denote the starting value as z̄(0). If we evolve with some rate parameter
σ2

B , then:

(eq. 3.17)
E[z̄(t)] ∼ N(z̄(0), σ2

Bt1)

Now consider a small section of a phylogenetic tree including two species and
an ancestral stem branch (Figure 3.4B). Assume a character evolves on that
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Figure 3.4. Brownian motion on a simple tree. A. Evolution in a single lineage
over time period t1. B. Evolution on a phylogenetic tree relating species a and
b, with branch lengths as given by t1, t2, and t3. Image by the author, can be
reused under a CC-BY-4.0 license.

tree under Brownian motion, again with starting value z̄(0) and rate parameter
σ2

B . First consider species a. The mean trait in that species x̄a evolves under
Brownian motion from the ancestor to species a over a total time of t1 + t2.
Thus,

(eq. 3.18)
x̄a ∼ N [z̄(0), σ2

B(t1 + t2)]

Similarly for species b, over a total time of t1 + t3

(eq. 3.19)
x̄b ∼ N [z̄(0), σ2

B(t1 + t3)]

However, x̄a and x̄b are not independent of each other. Instead, the two species
share one branch in common (branch 1). Each tip trait value can be thought
of as an ancestral value plus the sum of two evolutionary changes: one (from
branch 1) that is shared between the two species and one that is unique (branch
2 for species a and branch 3 for species b). In this case, mean trait values x̄a and
x̄b will share similarity due to their shared evolutionary history. We can describe
this similarity by calculating the covariance between the traits of species a and
b. We note that:

(eq. 3.20)
x̄a = ∆x̄1 + ∆x̄2
x̄b = ∆x̄1 + ∆x̄3

Where ∆x̄1, ∆x̄2, and ∆x̄3 represent evolution along the three branches in the
tree, are all normally distributed with mean zero and variances σ2t1, σ2t2, and
σ2t3, respectively. x̄a and x̄b are sums of normal random variables and are
themselves normal. The covariance of these two terms is simply the variance of
their shared term:

52

https://creativecommons.org/licenses/by/4.0/


(eq. 3.21)
cov(x̄a, x̄b) = var(∆x̄1) = σ2

Bt1

It is also worth noting that we can describe the trait values for the two species as
a single draw from a multivariate normal distribution. Each trait has the same
expected value, z̄(0), and the two traits have a variance-covariance matrix:

(eq. 3.22) [
σ2(t1 + t2) σ2t1

σ2t1 σ2(t1 + t3)

]
= σ2

[
t1 + t2 t1

t1 t1 + t3

]
= σ2C

The matrix C in equation 3.22 is commonly encountered in comparative biology,
and will come up again in this book. We will call this matrix the phylogenetic
variance-covariance matrix. This matrix has a special structure. For phyloge-
netic trees with n species, this is an n × n matrix, with each row and column
corresponding to one of the n taxa in the tree. Along the diagonal are the total
distances of each taxon from the root of the tree, while the off-diagonal elements
are the total branch lengths shared by particular pairs of taxa. For example,
C(1, 2) and C(2, 1) – which are equal because the matrix C is always symmet-
ric – is the shared phylogenetic path length between the species in the first row
– here, species a - and the species in the second row – here, species b. Under
Brownian motion, these shared path lengths are proportional to the phylogenetic
covariances of trait values. A full example of a phylogenetic variance-covariance
matrix for a small tree is shown in Figure 3.5. This multivariate normal distri-
bution completely describes the expected statistical distribution of traits on the
tips of a phylogenetic tree if the traits evolve according to a Brownian motion
model.

Section 3.5: Multivariate Brownian motion

The Brownian motion model we described above was for a single character.
However, we often want to consider more than one character at once. This
requires the use of multivariate models. The situation is more complex than
the univariate case – but not much! In this section I will derive the expectation
for a set of (potentially correlated) traits evolving together under a multivariate
Brownian motion model.

Character values across species can covary because of phylogenetic relationships,
because different characters tend to evolve together, or both. Fortunately, we
can generalize the model described above to deal with both of these types of
covariation. To do this, we must combine two variance-covariance matrices. The
first one, C, we have already seen; it describes the variances and covariances
across species for single traits due to shared evolutionary history along the
branches of a phylogentic tree. The second variance-covariance matrix, which
we can call R, describes the variances and covariances across traits due to their
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Figure 3.5. Example of a phylogenetic tree (left) and its associated phylogenetic
variance-covariance matrix C (right). Image by the author, can be reused under
a CC-BY-4.0 license.

54

https://creativecommons.org/licenses/by/4.0/


tendencies to evolve together. For example, if a species of lizard gets larger due
to the action of natural selection, then many of its other traits, like head and
limb size, will get larger too due to allometry. The diagonal entries of the matrix
R will provide our estimates of σ2

i , the net rate of evolution, for each trait, while
off-diagonal elements, σij , represent evolutionary covariances between pairs of
traits. We will denote number of species as n and the number of traits as m, so
that C is n × n and R is m × m.

Our multivariate model of evolution has parameters that can be described by
an m × 1 vector, a, containing the starting values for each trait – z̄1(0), z̄2(0),
and so on, up to z̄m(0), and an m × m matrix, R, described above. This model
has m parameters for a and m · (m + 1)/2 parameters for R, for a total of
m · (m + 3)/2 parameters.

Under our multivariate Brownian motion model, the joint distribution of all
traits across all species still follows a multivariate normal distribution. We find
the variance-covariance matrix that describes all characters across all species
by combining the two matrices R and C into a single large matrix using the
Kroeneker product:

(eq. 3.23)
V = R ⊗ C

This matrix V is n · m × n · m, and describes the variances and covariances of
all traits across all species.

We can return to our example of evolution along a single branch (Figure 3.4a).
Imagine that we have two characters that are evolving under a multivariate
Brownian motion model. We state the parameters of the model as:

(eq. 3.24)

a =
[
z̄1(0)
z̄2(0)

]
R =

[
σ2

1 σ12
σ12 σ2

2

]
For a single branch, C = [t1], so:

(eq. 3.25)

V = R ⊗ C =
[

σ2
1 σ12

σ12 σ2
2

]
⊗ [t1] =

[
σ2

1t1 σ12t1
σ12t1 σ2

2t1

]
The two traits follow a multivariate normal distribution with mean a and
variance-covariance matrix V.

For the simple tree in figure 3.4b,
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(eq. 3.26)

V = R ⊗ C =
[

σ2
1 σ12

σ12 σ2
2

]
⊗

[
t1 + t2 t1

t1 t1 + t3

]

=


σ2

1(t1 + t2) σ12(t1 + t2) σ2
1t1 σ12t1

σ12(t1 + t2) σ2
2(t1 + t2) σ12t1 σ2

2t1
σ2

1t1 σ12t1 σ2
1(t1 + t3) σ12(t1 + t3)

σ12t1 σ2
2t1 σ12(t1 + t3) σ2

2(t1 + t3)


Thus, the four trait values (two traits for two species) are drawn from a mul-
tivariate normal distribution with mean a = [z̄1(0), z̄1(0), z̄2(0), z̄2(0)] and the
variance-covariance matrix shown above.

Both univariate and multivariate Brownian motion models result in traits that
follow multivariate normal distributions. This is statistically convenient, and in
part explains the popularity of Brownian models in comparative biology.

Section 3.6: Simulating Brownian motion on trees

To simulate Brownian motion evolution on trees, we use the three properties
of the model described above. For each branch on the tree, we can draw from
a normal distribution (for a single trait) or a multivariate normal distribution
(for more than one trait) to determine the evolution that occurs on that branch.
We can then add these evolutionary changes together to obtain character states
at every node and tip of the tree.

I will illustrate one such simulation for the simple tree depicted in figure 3.4b.
We first set the ancestral character state to be z̄(0), which will then be the
expected value for all the nodes and tips in the tree. This tree has three branches,
so we draw three values from normal distributions. These normal distributions
have mean zero and variances that are given by the rate of evolution and the
branch length of the tree, as stated in equation 3.1. Note that we are modeling
changes on these branches, so even if z̄(0) ̸= 0 the values for changes on branches
are drawn from a distribution with a mean of zero. In the case of the tree in
Figure 3.1, x1 ∼ N(0, σ2t1). Similarly, x2 ∼ N(0, σ2t2) and x3 ∼ N(0, σ2t3). If I
set σ2 = 1 for the purposes of this example, I might obtain x1 = −1.6, x2 = 0.1,
and x3 = −0.3. These values represent the evolutionary changes that occur
along branches in the simulation. To calculate trait values for species, we add:
xa = +x1+x2 = 0−1.6+0.1 = −1.5, and xb = +x1+x3 = 0−1.6+−0.3 = −1.9.

This simulation algorithm works fine but is actually more complicated than it
needs to be, especially for large trees. We already know that xa and xb come
from a multivariate normal distribution with known mean vector and variance-
covariance matrix. So, as a simple alternative, we can simply draw a vector
from this distribution, and our tip values will have exactly the same statistical
properties as if they were simulated on a phylogenetic tree. These two methods
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for simulating character evolution on trees are exactly equivalent to one another.
In our small example, this alternative is not too much simpler than just adding
the branches - but in some circumstances it is much easier to draw from a
multivariate normal distribution.

Section 3.7: Summary

In this chapter, I introduced Brownian motion as a model of trait evolution. I
first connected Brownian motion to a model of neutral genetic drift for traits
that have no effect on fitness. However, as I demonstrated, Brownian motion can
result from a variety of other models, some of which include natural selection.
For example, traits will follow Brownian motion under selection is if the strength
and direction of selection varies randomly through time. In other words, testing
for a Brownian motion model with your data tells you nothing about whether
or not the trait is under selection.

There is one general feature of all models that evolve in a Brownian way: they
involve the action of a large number of very small “forces” pushing on characters.
No matter the particular distribution of these small effects or even what causes
them, if you add together enough of them you will obtain a normal distribution
of outcomes and, sometimes, be able to model this process using Brownian
motion. The main restriction might be the unbounded nature of Brownian
motion – species are expected to become more and more different through time,
without any limit, which must be unrealistic over very long time scales. We will
deal with this issue in later chapters.

In summary, Brownian motion is mathematically tractable, and has convenient
statistical properties. There are also some circumstances under which one would
expect traits to evolve under a Brownian model. However, as we will see later
in the book, one should view Brownian motion as an assumption that might not
hold for real data sets.

Footnotes

1: More formally, the ball will move in two-dimensional Brownian motion, which
describe movement both across and up and down the stadium rows. But if you
consider just the movement in one direction - say, the distance of the ball from
the field - then this is a simple single dimensional Brownian motion process as
described here.

2: Variance effective population size is the effective population size of a model
population with random mating, no substructure, and constant population size
that would have quantitative genetic properties equal to our actual population.
All of this is a bit beyond the scope of this book (but see Templeton 2006). But
writing Ne instead of N allows us to develop the model without worrying about
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all of the extra assumptions we would have to make about how individuals mate
and how populations are distributed over time and space.

3: In this book, we will typically consider variation among species rather than
populations. However, we will also always assume that species are made up of
one population, and so we can apply the same mathematical equations across
species in a phylogenetic tree.

4: In some cases in the literature, the magnitude of trait change is expressed in
within-population phenotypic standard deviations,

√
σ2

w, per generation (Estes
and Arnold 2007; e.g. Harmon et al. 2010). In that case, since dividing a
random normal deviate by x is equivalent to dividing its variance by x2, we
have σ2 = h2/Ne.
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Chapter 4: Fitting Brownian Motion Models to
Single Characters

Section 4.1: Introduction

Mammals come in a wide variety of shapes and sizes. Some species are incredibly
tiny. For example, the bumblebee bat, weighing in at 2 g, competes for the title
of smallest mammal with the slightly lighter (but also slightly longer) Etruscan
shrew (Hill 1974). Other species are huge, as anyone who has encountered a blue
whale knows. Body size is important as a biological variable because it predicts
so many other aspect of an animal’s life, from the physiology of heat exchange
to the biomechanics of locomotion. Thus, the rate at which body size evolves
is of great interest among mammalian biologists. Throughout this chapter, I
will discuss the evolution of body size across different species of mammals. The
data I will analyze is taken from Garland (1992).

Sometimes one might be interested in calculating the rate of evolution of a
particular character like body size in a certain clade, say, mammals. You have
a phylogenetic tree with branch lengths that are proportional to time, and data
on the phenotypes of species on the tips of that tree. It is usually a good idea
to log-transform your data if they involve a measurement from a living thing
(see Box 4.1, below). If we assume that the character has been evolving under a
Brownian motion model, we have two parameters to estimate: z̄(0), the starting
value for the Brownian motion model – equivalent to the ancestral state of the
character at the root of the tree – and σ2, the diffusion rate of the character. It
is this latter parameter that is commonly considered as the rate of evolution for
comparative approaches1.

Box 4.1: Biology under the log

One general rule for continuous traits in biology is to carry out a log-
transformation (usually natural log, base e, denoted ln) of your data before
undertaking any analysis. This also applies to comparative data. There
are two main reasons for this, one statistical and the other biological. The
statistical reason is that many methods assume that variables follow normal
distributions. One can observe that, in general, measurements of species’ traits
have a distribution that is skewed to the right. A log-transformation will often
result in trait distributions that are closer to normal. But why is this the case?
The answer is related to the biological reason for log-transformation. When
you log transform a variable, the new scale for that variable is a ratio scale,
so that a certain differences between points reflects a constant ratio of the
two numbers represented by the points. So, for example, if any two numbers
are separated by 0.693 units on a natural log scale, one will be exactly two
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times the other. Ratio scales make sense for living things because it is usually
percentage changes rather than absolute changes that matter. For example, a
change in body size of 1 mm might matter a lot for a termite, but be irrelevant
for an elephant; whereas a change in body size of 50% might be expected to
matter for them both.

Section 4.2: Estimating rates using independent contrasts

The information required to estimate evolutionary rates is efficiently summa-
rized in the early (but still useful) phylogenetic comparative method of indepen-
dent contrasts (Felsenstein 1985). Independent contrasts summarize the amount
of character change across each node in the tree, and can be used to estimate
the rate of character change across a phylogeny. There is also a simple mathe-
matical relationship between contrasts and maximum-likelihood rate estimates
that I will discuss below.

We can understand the basic idea behind independent contrasts if we think
about the branches in the phylogenetic tree as the historical “pathways” of
evolution. Each branch on the tree represents a lineage that was alive at some
time in the history of the Earth, and during that time experienced some amount
of evolutionary change. We can imagine trying to measure that change initially
by comparing sister taxa. We can compare the trait values of the two sister taxa
by finding the difference in their trait values, and then compare that to the total
amount of time they have had to evolve that difference. By doing this for all
sister taxa in the tree, we will get an estimate of the average rate of character
evolution ( 4.1A). But what about deeper nodes in the tree? We could use other
non-sister species pairs, but then we would be counting some branches in the
tree of life more than once (Figure 4.1B). Instead, we use a “pruning algorithm,”
(Felsenstein 1985, Felsenstein (2004)) chopping off pairs of sister taxa to create
a smaller tree (Figure 4.1C). Eventually, all of the nodes in the tree will be
trimmed off – and the algorithm will finish. Independent contrasts provides a
way to generalize the approach of comparing sister taxa so that we can quantify
the rate of evolution throughout the whole tree.

A more precise algorithm describing how phylogenetic independent contrasts are
calculated is provided in Box 4.2, below (from Felsenstein 1985). Each contrast
can be described as an estimate of the direction and amount of evolutionary
change across the nodes in the tree. PICs are calculated from the tips of the
tree towards the root, as differences between trait values at the tips of the tree
and/or calculated average values at internal nodes. The differences themselves
are sometimes called “raw contrasts” (Felsenstein 1985). These raw contrasts
will all be statistically independent of each other under a wide range of evolu-
tionary models. In fact, as long as each lineage in a phylogenetic tree evolves
independently of every other lineage, regardless of the evolutionary model, the
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Figure 4.1. Pruning algorithm that can be used to identify five independent
contrasts for a tree with six species (following Felsenstein 1985). The numbered
order in this figure is only one of several possibilities that work; one can also
prune the tree in the order 1, 2, 4, 3, 5 and get identical results. Image by the
author, can be reused under a CC-BY-4.0 license.
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raw contrasts will be independent of each other. However, people almost never
use raw contrasts because they are not identically distributed; each raw contrast
has a different expected distribution that depends on the model of evolution and
the branch lengths of the tree. In particular, under Brownian motion we expect
more change on longer branches of the tree. Felsenstein (1985) divided the raw
contrasts by their expected standard deviation under a Brownian motion model,
resulting in standardized contrasts. These standardized contrasts are, under a
BM model, both independent and identically distributed, and can be used in a
variety of statistical tests. Note that we must assume a Brownian motion model
in order to standardize the contrasts; results derived from the contrasts, then,
depend on this Brownian motion assumption.

Box 4.2: Algorithm for PICs

One can calculate PICs using the algorithm from Felsenstein (1985). I reproduce
this algorithm below. Keep in mind that this is an iterative algorithm – you
repeat the five steps below once for each contrast, or n − 1 times over the whole
tree (see Figure 4.1C as an example).

1. Find two tips on the phylogeny that are adjacent (say nodes i and j) and
have a common ancestor, say node k. Note that the choice of which node
is i and which is j is arbitrary. As you will see, we will have to account
for this “arbitrary direction” property of PICs in any analyses where we
use them to do certian analyses!

2. Compute the raw contrast, the difference between their two tip values:
(eq. 4.1)

cij = xi − xj

• Under a Brownian motion model, cij has expectation zero and variance
proportional to vi + vj .

3. Calculate the standardized contrast by dividing the raw contrast by its
variance (eq. 4.2)

sij = cij

vi + vj
= xi − xj

vi + vj

• Under a Brownian motion model, this contrast follows a normal distri-
bution with mean zero and variance equal to the Brownian motion rate
parameter σ2.

4. Remove the two tips from the tree, leaving behind only the ancestor k,
which now becomes a tip. Assign it the character value: (eq. 4.3)

xk = (1/vi)xi + (1/vj)xj

1/v1 + 1/vj
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• It is worth noting that xk is a weighted average of xi and xj , but does
not represent an ancestral state reconstruction, since the value is only
influenced by species that descend directly from that node and not other
relatives.

5. Lengthen the branch below node k by increasing its length from vk to
vk + vivj/(vi + vj). This accounts for the uncertainty in assigning a value
to xk.

As mentioned above, we can apply the algorithm of independent contrasts to
learn something about rates of body size evolution in mammals. We have a
phylogenetic tree with branch lengths as well as body mass estimates for 49
species (Figure 4.2). If we ln-transform mass and then apply the method above
to our data on mammal body size, we obtain a set of 48 standardized contrasts.
A histogram of these contrasts is shown as Figure 4.2 (data from from Garland
1992).

Note that each contrast is an amount of change, xi − xj , divided by a branch
length, vi + vj , which is a measure of time. Thus, PICs from a single trait can
be used to estimate σ2, the rate of evolution under a Brownian model. The PIC
estimate of the evolutionary rate is:

(eq. 4.4)

σ̂2
P IC =

∑
s2

ij

n − 1

That is, the PIC estimate of the evolutionary rate is the average of the n − 1
squared contrasts. This sum is taken over all sij , the standardized independent
contrast across all (i, j) pairs of sister branches in the phylogenetic tree. For a
fully bifurcating tree with n tips, there are exactly n − 1 such pairs. If you are
statistically savvy, you might note that this formula looks a bit like a variance.
In fact, if we state that the contrasts have a mean of 0 (which they must because
Brownian motion has no overall trends), then this is a formula to estimate the
variance of the contrasts.

If we calculate the mean sum of squared contrasts for the mammal body mass
data, we obtain a rate estimate of σ̂2

P IC = 0.09. We can put this into words:
if we simulated mammalian body mass evolution under this model, we would
expect the variance across replicated runs to increase by 0.09 per million years.
Or, in more concrete terms, if we think about two lineages diverging from one
another for a million years, we can draw changes in ln-body mass for both of
them from a normal distribution with a variance of 0.09. Their difference, then,
which is the amount of expected divergence, will be normal with a variance of
2 · 0.09 = 0.18. Thus, with 95% confidence, we can expect the two species to
differ maximally by two standard deviations of this distribution, 2·

√
0.18 = 0.85.

Since we are on a log scale, this amount of change corresponds to a factor of
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Figure 4.2. Histogram of PICs for ln-transformed mammal body mass on a
phylogenetic tree with branch lengths in millions of years (data from Garland
1992). Image by the author, can be reused under a CC-BY-4.0 license.
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e2.68 = 2.3, meaning that one species will commonly be about twice as large (or
small) as the other after just one million years.

Section 4.3: Estimating rates using maximum likelihood

We can also estimate the evolutionary rate by finding the maximum-likelihood
parameter values for a Brownian motion model fit to our data. Recall that ML
parameter values are those that maximize the likelihood of the data given our
model (see Chapter 2).

We already know that under a Brownian motion model, tip character states
are drawn from a multivariate normal distribution with a variance-covariance
matrix, C, that is calculated based on the branch lengths and topology of the
phylogenetic tree (see Chapter 3). We can calculate the likelihood of obtaining
the data under our Brownian motion model using a standard formula for the
likelihood of drawing from a multivariate normal distribution:

(eq. 4.5)

L(x|z̄(0), σ2, C) = e−1/2(x−z̄(0)1)⊺(σ2C)−1(x−z̄(0)1)√
(2π)ndet(σ2C)

Here, our model parameters are σ2 and z̄(0), the root trait value. x is an n × 1
vector of trait values for the n tip species in the tree, with species in the same
order as C, and 1 is an n × 1 column vector of ones. Note that (σ2C)−1 is the
matrix inverse of the matrix σ2C

As an example, with the mammal data, we can calculate the likelihood for a
model with parameter values σ2 = 1 and z̄(0) = 0. We need to work with
ln-likelihoods (lnL), both because the value here is so small and to facilitate
future calculations, so: lnL(x|z̄(0), σ2, C) = −116.2.

To find the ML estimates of our model parameters, we need to find the parameter
values that maximize that function. One (not very efficient) way to do this is
to calculate the likelihood across a wide range of parameter values. One can
then visualize the resulting likelihood surface and identify the maximum of the
likelihood function. For example, the likelihood surface for the mammal body
size data given a Brownian motion model is shown in Figure 4.3. Note that this
surface has a peak around σ2 = 0.09 and z̄(0) = 4. Inspecting the matrix of ML
values, we find the highest ln-likelihood (-78.05) at σ2 = 0.089 and z̄(0) = 4.65.

The calculation described above is inefficient, because we have to calculate like-
lihoods at a wide range of parameter values that are far from the optimum. A
better strategy involves the use of optimization algorithms, a well-developed
field of mathematical analysis (Nocedal and Wright 2006). These algorithms
differ in their details, but we can illustrate how they work with a general ex-
ample. Imagine that you are near Mt. St. Helens, and you are tasked with
finding the peak of that mountain. It is foggy, but you can see the area around
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Figure 4.3. Likelihood surface for the evolution of mammalian body mass using
the data from Garland (1992). Image by the author, can be reused under a
CC-BY-4.0 license.
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your feet and have an accurate altimeter. One strategy is to simply look at the
slope of the mountain where you are standing, and climb uphill. If the slope is
steep, you probably still are far from the top, and should climb fast; if the slope
is shallow, you might be near the top of the mountain. It may seem obvious
that this will get you to a local peak, but perhaps not the highest peak of Mt.
St. Helens. Mathematical optimization schemes have this potential difficulty as
well, but use some tricks to jump around in parameter space and try to find the
overall highest peak as they climb. Details of actual optimization algorithms are
beyond the scope of this book; for more information, see Nocedal and Wright
(2006).

One simple example is based on Newton’s method of optimization [as imple-
mented, for example, by the r function nlm()]. We can use this algorithm to
quickly find accurate ML estimates2.

Using optimization algorithms we find a ML solution at σ̂2
ML = 0.08804487

and ˆ̄z(0) = 4.640571, with lnL = −78.04942. Importantly, the solution can be
found with only 10 likelihood calculations; this is the value of good optimization
algorithms. I have plotted the path through parameter space taken by Newton’s
method when searching for the optimum in Figure 4.4. Notice two things: first,
that the function starts at some point and heads uphill on the likelihood surface
until an optimum is found; and second, that this calculation requires many fewer
steps (and much less time) than calculating the likelihood for a wide range of
parameter values.

Using an optimization algorithm also has the added benefit of providing (ap-
proximate) confidence intervals for parameter values based on the Hessian of
the likelihood surface. This approach assumes that the shape of the likelihood
surface in the immediate vicinity of the peak can be approximated by a quadratic
function, and uses the curvature of that function, as determined by the Hessian,
to approximate the standard errors of parameter values (Burnham and Ander-
son 2003). If the surface is strongly peaked, the SEs will be small, while if the
surface is very broad, the SEs will be large. For example, the likelihood surface
around the ML values for mammal body size evolution has a Hessian of:

(eq. 4.6)

H =
[

−314.6 −0.0026
−0.0026 −0.99

]
This gives standard errors of 0.13 (for σ̂2

ML) and 0.72 [for ˆ̄z(0)]. If we assume the
error around these estimates is approximately normal, we can create confidence
estimates by adding and subtracting twice the standard error. We then obtain
95% CIs of 0.06 − 0.11 (for σ̂2

ML) and 3.22 − 6.06 [for ˆ̄z(0)].

The danger in optimization algorithms is that one can sometimes get stuck on
local peaks. More elaborate algorithms repeated for multiple starting points
can help solve this problem, but are not needed for simple Brownian motion
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Figure 4.4. Likelihood surface for the evolution of mammalian body mass using
the data from Garland (1992). Shown here is the path taken by the optimization
algorithm to find the peak of the likelihood surface. The last five steps of this
ten-step algorithm are too close together to be seen in this figure. Image by the
author, can be reused under a CC-BY-4.0 license.
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on a tree as considered here. Numerical optimization is a difficult problem in
phylogenetic comparative methods, especially for software developers.

In the particular case of fitting Brownian motion to trees, it turns out that
even our fast algorithm for optimization was unnecessary. In this case, the
maximum-likelihood estimate for each of these two parameters can be calculated
analytically (O’Meara et al. 2006a).

(eq. 4.7)
ˆ̄z(0) = (1⊺C−11)−1(1⊺C−1x)

and:

(eq. 4.8)

σ̂2
ML = (x − ˆ̄z(0)1)⊺C−1(x − ˆ̄z(0)1)

n

where n is the number of taxa in the tree, C is the n × n variance-covariance
matrix under Brownian motion for tip characters given the phylogenetic tree, x
is an n × 1 vector of trait values for tip species in the tree, 1 is an n × 1 column
vector of ones, ˆ̄z(0) is the estimated root state for the character, and σ̂2

ML is the
estimated net rate of evolution.

Applying this approach to mammal body size, we obtain estimates that are
exactly the same as our results from numeric optimization: σ̂2

ML = 0.088 and
ˆ̄z(0) = 4.64.

Equation (4.8) is biased, and will consistently estimate rates of evolution that are
a little too small; an unbiased version based on restricted maximum likelihood
(REML) and used by Garland (1992) and others is:

(eq. 4.9)

σ̂2
REML = (x − ˆ̄z(0)1)⊺C−1(x − ˆ̄z(0)1)

n − 1

This correction changes our estimate of the rate of body size in mammals from
σ̂2

ML = 0.088 to σ̂2
REML = 0.090. Equation 4.8 is exactly identical to the

estimated rate of evolution calculated using the average squared independent
contrast, described above; that is, σ̂2

P IC = σ̂2
REML. In fact, PICs are a formula-

tion of a REML model. The “restricted” part of REML refers to the fact that
these methods calculate likelihoods based on a transformed set of data where
the effect of nuisance parameters has been removed. In this case, the nuisance
parameter is the estimated root state ˆ̄z(0) 3.

For the mammal body size example, we can further explore the difference be-
tween REML and ML in terms of statistical confidence intervals using likelihoods
based on the contrasts. We assume, again, that the contrasts are all drawn from
a normal distribution with mean 0 and unknown variance. If we again use New-
ton’s method for optimization, we find a maximum REML log-likelihood of -10.3
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at σ̂2
REML = 0.090. This returns a 1 × 1 matrix for the Hessian with a value of

2957.8, corresponding to a SE of 0.018. This slightly larger SE corresponds to
95% CI for σ̂2

REML of 0.05 − 0.13.

In the context of comparative methods, REML has two main advantages. First,
PICs treat the root state of the tree as a nuisance parameter. We typically have
very little information about this root state, so that can be an advantage of
the REML approach. Second, PICs are easy to calculate for very large phyloge-
netic trees because they do not require the construction (or inversion!) of any
large variance-covariance matrices. This is important for big phylogenetic trees.
Imagine that we had a phylogenetic tree of all vertebrates (~60,000 species) and
wanted to calculate the rate of body size evolution. To use standard maximum
likelihood, we have to calculate C, a matrix with 60, 000 × 60, 000 = 3.6 billion
entries, and invert it to calculate C−1. To calculate PICs, by contrast, we only
have to carry out on the order of 120,000 operations. Thankfully, there are
now pruning algorithms to quickly calculate likelihoods for large trees under a
variety of different models (see, e.g., FitzJohn 2012; Freckleton 2012; and Ho
and Ané 2014).

Section 4.4: Bayesian approach to evolutionary rates

Finally, we can also use a Bayesian approach to fit Brownian motion models to
data and to estimate the rate of evolution. This approach differs from the ML
approach in that we will use explicit priors for parameter values, and then run
an MCMC to estimate posterior distributions of parameter estimates. To do
this, we will modify the basic algorithm for Bayesian MCMC (see Chapter 2)
as follows:

1. Sample a set of starting parameter values, σ2 and z̄(0) from their prior dis-
tributions. For this example, we can set our prior distribution as uniform
between 0 and 0.5 for σ2 and uniform from 0 to 10 for z̄(0).

2. Given the current parameter values, select new proposed parameter values
using the proposal density Q(p′|p). For both parameter values, we will use
a uniform proposal density with width wp, so that: (eq. 4.10)

Q(p′|p) ∼ U(p − wp

2
, p + wp

2
)

3. Calculate three ratios:

• The prior odds ratio, Rprior. This is the ratio of the probability of
drawing the parameter values p and p from the prior. Since our priors
are uniform, this is always 1.

• The proposal density ratio, Rproposal. This is the ratio of probability
of proposals going from p to p and the reverse. We have already
declared a symmetrical proposal density, so that Q(p′|p) = Q(p|p′)
and Rproposal = 1.
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• The likelihood ratio, Rlikelihood. This is the ratio of probabilities of
the data given the two different parameter values. We can calculate
these probabilities from equation 4.5 above. (eq. 4.11)

Rlikelihood = L(p′|D)
L(p|D)

= P (D|p′)
P (D|p)

4. Find the acceptance ratio, Raccept, which is product of the prior odds,
proposal density ratio, and the likelihood ratio. In this case, both the
prior odds and proposal density ratios are 1, so Raccept = Rlikelihood.

5. Draw a random number x from a uniform distribution between 0 and 1.
If x < Raccept, accept the proposed value of both parameters; otherwise
reject, and retain the current value of the two parameters.

6. Repeat steps 2-5 a large number of times.

Using the mammal body size data, I ran an MCMC with 10,000 generations,
discarding the first 1000 as burn-in. Sampling every 10 generations, I obtain
parameter estimates of σ̂2

bayes = 0.10 (95% credible interval: 0.066 − 0.15) and
ˆ̄z(0) = 3.5 (95% credible interval: 2.3 − 5.3; Figure 4.5).

Note that the parameter estimates from all three approaches (REML, ML, and
Bayesian) were similar. Even the confidence/credible intervals varied a little bit
but were of about the same size in all three cases. All of the approaches above are
mathematically related and should, in general, return similar results. One might
place higher value on the Bayesian credible intervals over confidence intervals
from the Hessian of the likelihood surface, for two reasons: first, the Hessian
leads to an estimate of the CI under certain conditions that may or may not
be true for your analysis; and second, Bayesian credible intervals reflect overall
uncertainty better than ML confidence intervals (see chapter 2).

Section 4.5: Summary

By fitting a Brownian motion model to phylogenetic comparative data, one can
estimate the rate of evolution of a single character. In this chapter, I demon-
strated three approaches to estimating that rate: PICs, maximum likelihood,
and Bayesian MCMC. In the next chapter, we will discuss other models of evo-
lution that can be fit to continuous characters on trees.

Footnotes

1: Throughout this chapter, when I say “rate” I will mean the Brownian motion
parameter σ2. This is a little different from “traditional” estimates of evolution-
ary rate, like those estimated by paleontologists. For example, one might have
measurements of trait in a series of fossils representing an evolutionary lineage
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Figure 4.5. Bayesian analysis of body size evolution in mammals. Figure shows
the likelihood profile (A) and posterior distributions for model parameters σ̂2

bayes

(B) and ˆ̄z(0) (C). Image by the author, can be reused under a CC-BY-4.0 license.
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sampled at different time periods. By calculating the amount of change over
a given time interval, one can estimate an evolutionary rate. These rates can
be expressed as Darwins (defined as the log-difference in trait values divided by
time in years) or Haldanes (defined as the difference in trait values scaled by
their standard deviations divided by time in generations). Both types of rates
have been calculated from both fossil data and contemporary time-series data
on evolution from both islands and lab experiments. Such rates best capture
evolutionary trends, where the mean value of a trait is changing in a consistent
way through time (for more information see review in Harmon 2014). Rates
estimated by Brownian motion are a different type of “rate”, and some care
must be taken to compare the two (see, e.g., Gingerich 1983).

2: Note that there are more complicated optimization algorithms that are useful
for more difficult problems in comparative methods. In the case presented here,
where the surface is smooth and has a single peak, almost any algorithm will
work.

3:PICs are a transformation of the original data in which all information about
the root state has been removed; our idea of what that root state might be
has no effect on calculations using PICs. One can calculate the likelihood for
the PIC REML method by assuming all of the standardized PICs are drawn
from a normal distribution (eq. 4.5) with mean 0 and variance σ̂2

REML (eq.
4.8). Alternatively, one can estimate the variance of the PICs directly, keeping
in mind that one must use a mean of zero (eq. 4.4). These two methods give
exactly the same results.
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Chapter 5: Fitting Brownian Motion Models to
Multiple Characters

Section 5.1: Introduction

As discussed in Chapter 4, body size is one of the most important traits of an
animal. Body size has a close relationship to almost all of an animal’s ecological
interactions, from whether it is a predator or prey to its metabolic rate. If that
is true, we should be able to use body size to predict other traits that might be
related through shared evolutionary processes. We need to understand how the
evolution of body size is correlated with other species’ characteristics.

A wide variety of hypotheses can be framed as tests of correlations between con-
tinuously varying traits across species. For example, is the body size of a species
related to its metabolic rate? How does the head length of a species relate to
overall size, and do deviations from this relationship relate to an animal’s diet?
These questions and others like them are of interest to evolutionary biologists
because they allow us to test hypotheses about the factors in influencing char-
acter evolution over long time scales. These types of approaches allow us to
answer some of the classic “why” questions in biology. Why are elephants so
large? Why do some species of crocodilians have longer heads than others? If
we find a correlation between two characters, we might suspect that there is a
causal relationship between our two variables of interest - or perhaps that both
of our measured variables share a common cause.

In this chapter, we will use the example of home range size, which is the area
where an animal carries out its day-to-day activities. We will again use data
from Garland (1992) and test for a relationship between body size and the
size of a mammal’s home range. I will describe methods for using empirical
data to estimate the parameters of multivariate Brownian motion models. I
will then describe a model-fitting approach to test for evolutionary correlations.
This model fitting approach is simple but not commonly used. Finally, I will
review two common statistical approaches to test for evolutionary correlations,
phylogenetic independent contrasts and phylogenetic generalized least squares,
and describe their relationship to model-fitting approaches.

Section 5.2: What is evolutionary correlation?

There is sometimes a bit of confusion among beginners as to what, exactly, we
are doing when we carry out a comparative method, especially when testing for
character correlations. Common language that comparative methods “control
for phylogeny” or “remove the phylogeny from the data” is not necessarily en-
lightening or even always accurate. Another common suggestion is that species
are not statistically independent and that we must account for that with compar-
ative methods. While accurate, I still don’t think this statement fully captures
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the tree-thinking perspective enabled by comparative methods. In this section,
I will use the particular example of correlated evolution to try to illustrate the
power of comparative methods and how they differ from standard statistical
approaches that do not use phylogenies.

In statistics, two variables can be correlated with one another. We might refer
to this as a standard correlation. When two traits are correlated, it means that
given the value of one trait – say, body size in mammals – one can predict the
value of another – like home range area. Correlations can be positive (large
values of x are associated with large values of y) or negative (large values of x
are associated with small values of y). A surprisingly wide variety of hypotheses
in biology can be tested by evaluating correlations between characters.

In comparative biology, we are often interested more specifically in evolutionary
correlations. Evolutionary correlations occur when two traits tend to evolve
together due to processes like mutation, genetic drift, or natural selection. If
there is an evolutionary correlation between two characters, it means that we can
predict the magnitude and direction of changes in one character given knowledge
of evolutionary changes in another. Just like standard correlations, evolutionary
correlations can be positive (increases in trait x are associated with increases in
y) or negative (decreases in x are associated with increases in y).

We can now contrast standard correlations, testing the relationships between
trait values across a set of species, with evolutionary correlations - where evolu-
tionary changes in two traits are related to each other. This is a key distinction,
because phylogenetic relatedness alone can lead to a relationship between two
variables that are not, in fact, evolving together (Figure 5.1; also see Felsenstein
1985). In such cases, standard correlations will, correctly, tell us that one can
predict the value of trait y by knowing the value of trait x, at least among
extant species; but we would be misled if we tried to make any evolutionary
causal inference from this pattern. In the example of Figure 5.1, we can only
predict x from y because the value of trait x tells us which clade the species
belongs to, which, in turn, allows reasonable prediction of y. In fact, this is a
classical example of a case where correlation is not causation: the two variables
are only correlated with one another because both are related to phylogeny.

If we want to test hypotheses about trait evolution, we should specifically test
evolutionary correlations1. If we find a relationship among the independent
contrasts for two characters, for example, then we can infer that changes in
each character are related to changes in the other – an inference that is much
closer to most biological hypotheses about why characters might be related.
In this case, then, we can think of statistical comparative methods as focused
on disentangling patterns due to phylogenetic relatedness from patterns due to
traits evolving in a correlated manner.
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Figure 5.1. Examples from simulations of pure birth trees (b = 1) with n = 100
species. Plotted points represent character values for extant species in each
clade. In all three panels, σ2

x = σ2
y = 1. σ2

xy varies with σ2
xy = 0 (panel A),

σ2
xy = 0.8 (panel B), and σ2

xy = −0.8 (panel C). Note the (apparent) negative
correlation in panel A, which can be explained by phylogenetic relatedness of
species within two clades. Only panels B and C show data with an evolutionary
correlation. However, this would be difficult or impossible to conclude without
using comparative methods. Image by the author, can be reused under a CC-
BY-4.0 license.

Section 5.3: Modeling the evolution of correlated charac-
ters

We can model the evolution of multiple (potentially correlated) continuous char-
acters using a multivariate Brownian motion model. This model is similar to
univariate Brownian motion (see chapter 3), but can model the evolution of
many characters at the same time. As with univariate Brownian motion, trait
values change randomly in both direction and distance over any time interval.
Here, though, these changes are drawn from multivariate normal distributions2.
Multivariate Brownian motion can encompass the situation where each charac-
ter evolves independently of one another, but can also describe situations where
characters evolve in a correlated way.

We can describe multivariate Brownian motion with a set of parameters that
are described by a, a vector of phylogenetic means for a set of r characters:

(eq. 5.1)
a =

[
z̄1(0) z̄2(0) . . . z̄r(0)

]
This vector represents the starting point in r-dimensional space for our random
walk. In the context of comparative methods, this is the character measurements
for the lineage at the root of the tree. Additionally, we have an evolutionary
rate matrix R:
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(eq. 5.2)

R =


σ2

1 σ21 . . . σn1

σ21 σ2
2 . . .

...
...

... . . . ...
σ1n . . . . . . σ2

rn


Here, the rate parameter for each axis (σ2

i ) is along the matrix diagonal. Off-
diagonal elements represent evolutionary covariances between pairs of axes (note
that σij = σji). It is worth noting that each individual character evolves under
a Brownian motion process. Covariances among characters, though, potentially
make this model distinct from one where each character evolves independently
of all the others (Figure 5.2).

Figure 5.2. Hypothetical pathways of evolution (arrows) for (A) two uncorre-
lated traits, (B) two traits evolving with a positive covariance, and (C) two
traits evolving with a negative covariance. Note that in (B), when trait 1 gets
larger trait 2 also gets larger, but in (C) positive changes in trait 1 are paired
with negative changes in trait 2. Image by the author, can be reused under a
CC-BY-4.0 license.

When you have data for multiple continuous characters across many species
along with a phylogenetic tree, you can fit a multivariate Brownian motion
model to the data, as discussed in Chapter 3.

To calculate the likelihood, we can use the fact that, under our multivariate
Brownian motion model, the joint distribution of all traits across all species has
a multivariate normal distribution. Following Chapter 3, we find the variance-
covariance matrix that describes that model by combining the two matrices R
and C into a single large matrix using the Kroeneker product:

(eq. 5.3)

V = R ⊗ C
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This matrix V is nr × nr. We can then substitute V for C in equation (4.5) to
calculate the likelihood:

(eq. 5.4)

L(xnr|a, R, C) = e−1/2(xnr−D·a)⊺(V)−1(xnr−D·a)√
(2π)nmdet(V)

Here D is an nr×r design matrix where each element Dij is 1 if (j −1) ·n < i ≤
j · n and 0 otherwise. xnr is a single vector with all trait values for all species,
listed so that the first n elements in the vector are trait 1, the next n are for
trait 2, and so on:

(eq. 5.5)
xnr =

[
x11 x12 . . . x1n x21 . . . xnr

]
We can find the value of the likelihood at its maximum by calculating
L(xnr|a, R, C) using eq. 5.4 and an optimization routine to find the MLE.

Alternatively, one can calculate this MLE solution directly. Equations for esti-
mating â (the estimated vector of phylogenetic means for all characters) and R̂
(the estimated evolutionary rate matrix) are (Revell and Harmon 2008, Hohen-
lohe and Arnold (2008)):

(eq. 5.6)
â = [(1⊺C−11)−1(1⊺C−1X)]⊺

(eq. 5.7)

R̂ = (X − 1â)⊺C−1(X − 1â)
n

Note here that we use X to denote the n (species) × r (traits) matrix of all traits
across all species. Note the similarity between these multivariate equations (5.6
and 5.7) and their univariate equivalents (equations 4.6 and 4.7).

Section 5.4: Testing for evolutionary correlations

There are many ways to test for evolutionary correlations between two charac-
ters. Traditional methods like PICs and PGLS work great for testing evolu-
tionary regression, which is very similar to testing for evolutionary correlations.
However, when using those methods the connection to actual models of charac-
ter evolution can remain opaque. Thus, I will first present approaches to test for
correlated evolution based on model selection using AIC and Bayesian analysis.
I will then return to “standard” methods for evolutionary regression at the end
of the chapter.
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Section 5.4a: Testing for character correlations using maximum like-
lihood and AIC

To test for an evolutionary correlation between two characters, we are really
interested in the elements in the matrix R. For two characters, x and y, R can
be written as:

(eq. 5.8)

R =
[

σ2
x σxy

σxy σ2
y

]
We are interested in the parameter σxy - the evolutionary covariance - and
whether it is equal to zero (no correlation) or not. One simple way to test this
hypothesis is to set up two competing hypotheses and compare them to each
other. One hypothesis (H1) is that the traits evolve independently of each other,
and another (H2) that the traits evolve with some covariance σxy. We can write
these two rate matrices as:

(eq. 5.9)

RH1 =
[
σ2

x 0
0 σ2

y

]
RH2 =

[
σ2

x σxy

σxy σ2
y

]
We can calculate an ML estimate of the parameters in RH2 using equation 5.4.
The maximum likelihood estimate of RH1 can be obtained by noting that, if
character evolution is independent across all characters, then both σ2

x and σ2
y

can be obtained by treating each character separately and using equations from
chapter 3 to solve for each. It turns out that the ML estimates for σ2

x and σ2
y

are always exactly the same for H1 and H2.

To compare these two models, we calculate the likelihood of each using equation
5.4. We can then compare these two likelihoods using either a likelihood ratio
test or by comparing AICc scores (see chapter 2).

For the mammal example, we can consider the two traits of (ln-transformed)
body size and home range size (Garland 1992). These two characters have a
positive correlation using standard regression analysis (r = 0.27), and a linear
regression is significant (P = 0.0001; Figure 5.3). If we fit a multivariate Brow-
nian motion model to these data, considering home range as trait 1 and body
mass as trait 2, we obtain the following parameter estimates:

(eq. 5.10)

âH2 =
[
2.54
4.64

]
R̂H2 =

[
0.24 0.10
0.10 0.09

]
Note the positive off-diagonal element in the estimated R matrix, suggesting
a positive evolutionary correlation between these two traits. This model corre-
sponds to hypothesis 2 above, and has a log-likelihood of lnL = −164.0. If we
fit a model with no correlation between the two traits, we obtain:
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Figure 5.3. The relationship between mammal body mass and home-range size.
To illustrate the effect of accounting for a tree, I plot a solid line for the re-
gression line from a standard analysis, and dotted line from PGLS, which uses
the phylogenetic tree. These methods are discussed in more detail in the next
section. Image by the author, can be reused under a CC-BY-4.0 license.
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(eq. 5.11)

âH1 =
[
2.54
4.64

]
R̂H1 =

[
0.24 0

0 0.09

]
It is worth noting again that only the estimates of the evolutionary correlation
were affected by this model restriction; all other parameter estimates remain the
same. This model has a smaller (more negative) log-likelihood of lnL = −180.5.

A likelihood ratio test gives ∆ = 33.0, and P << 0.001, rejecting the null
hypothesis. The difference in AICc scores is 30.9, and the Akaike weight for
model 2 is effectively 1.0. All ways of comparing these two models give strong
support for hypothesis 2. We can conclude that there is an evolutionary corre-
lation between body mass and home range size in mammals. What this means
in evolutionary terms is that, across mammals, evolutionary changes in body
mass tend to positively covary with changes in home range.

Section 5.4b: Testing for character correlations using Bayesian model
selection

We can also implement a Bayesian approach to testing for the correlated evolu-
tion of two characters. The simplest way to do this is just to use the standard
algorithm for Bayesian MCMC to fit a correlated model to the two characters.
We can modify the algorithm presented in chapter 2 as follows:

1. Sample a set of starting parameter values σ2
x, σ2

y, σxy, z̄1(0), and z̄2(0) from
prior distributions. For this example, we can set our prior distribution as
uniform between 0 and 1 for σ2

x and σ2
y, uniform from -1 to +1 for σxy,

uniform from 1 to 9 for z̄1(0) (lnMass), and -3 to 5 for z̄1(0) (lnHomerange).
2. Given the current parameter values, select new proposed parameter values

using the proposal density Q(p′|p). Here, for all five parameter values, we
will use a uniform proposal density with width 0.2, so that Q(p′|p) ∼
U(p − 0.1, p + 0.1).

3. Calculate three ratios:

• The prior odds ratio, Rprior. This is the ratio of the probability of drawing
the parameter values p and p’ from the prior. Since our priors are uniform,
Rprior = 1.

• The proposal density ratio, Rproposal. This is the ratio of probability of
proposals going from p to p’ and the reverse. Our proposal density is
symmetrical, so that Q(p′|p) = Q(p|p′) and Rproposal = 1.

• The likelihood ratio, Rlikelihood. This is the ratio of probabilities of the
data given the two different parameter values. We can calculate these
probabilities from equation 5.6 above (eq. 5.12).

Rlikelihood = L(p′|D)
L(p|D)

= P (D|p′)
P (D|p)
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4. Find Raccept, the product of the prior odds, proposal density ratio, and
the likelihood ratio. In this case, both the prior odds and proposal density
ratios are 1, so Raccept = Rlikelihood.

5. Draw a random number x from a uniform distribution between 0 and 1. If
x < Raccept, accept the proposed value of all parameters; otherwise reject,
and retain the current parameter values.

6. Repeat steps 2-5 a large number of times.

We can then inspect the posterior distribution for the parameter is significantly
greater than (or less than) zero. As an example, I ran this MCMC for 100,000
generations, discarding the first 10,000 generations as burn-in. I then sampled
the posterior distribution every 100 generations, and obtained the following
parameter estimates: σ̂2

x = 0.26 [95% credible interval (CI): 0.18 - 0.38], σ̂2
y =

0.10 (95% CI: 0.06 -0.15), and σ̂xy = 0.11 (95% CI: 0.06 - 0.17; see Figure 5.4).
These results are comparable to our ML estimates. Furthermore, the 95% CI
for σxy does not overlap with 0; in fact, none of the 901 posterior samples of
σxy are less than zero. Again, we can conclude with confidence that there is an
evolutionary correlation between these two characters.

Section 5.5c: Testing for character correlations using traditional ap-
proaches (PIC, PGLS)

The approach outlined above, which tests for an evolutionary correlation among
characters using model selection, is not typically applied in the comparative biol-
ogy literature. Instead, most tests of character correlation rely on phylogenetic
regression using one of two methods: phylogenetic independent contrasts (PICs)
and phylogenetic general least squares (PGLS). PGLS is actually mathemati-
cally identical to PICs in the simple case described here, and more flexible than
PICs for other models and types of characters. Here I will review both PICs and
PGLS and explain how they work and how they relate to the models described
above.

Phylogenetic independent contrasts can be used to carry out a regression test
for the relationship between two different characters. To do this, one calculates
standardized PICs for trait x and trait y. One then uses standard linear regres-
sion forced through the origin to test for a relationship between these two sets
of PICs. It is necessary to force the regression through the origin because the
direction of subtraction of contrasts across any node in the tree is arbitrary; a
reflection of all of the contrasts across both axes simultaneously should have no
effect on the analyses3.

For mammal homerange and body mass, a PIC regression test shows a significant
correlation between the two traits (P << 0.0001; Figure 5.5).

There is one drawback to PIC regression analysis, though – one does not recover
an estimate of the intercept of the regression of y on x – that is, the value of y
one would expect when x = 0. The easiest way to get this parameter estimate
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Figure 5.4. Regression based on independent contrasts. The regression line is
forced through the origin. Image by the author, can be reused under a CC-BY-
4.0 license.
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is to instead use Phylogenetic Generalized Least Squares (PGLS). PGLS uses
the common statistical machinery of generalized least squares, and applies it
to phylogenetic comparative data. In normal generalized least squares, one
constructs a model of the relationship between y and x, as:

(eq. 5.13)
y = XDb + ϵ

Here, y is an n × 1 vector of trait values and b is a vector of unknown regres-
sion coefficients that must be estimated from the data. XD is a design matrix
including the traits that one wishes to test for a correlation with y and – if the
model includes an intercept – a column of 1s. To test for correlations, we use:

(eq. 5.14)

XD =


1 x1
1 x2

. . . . . .
1 xn


In the case of one predictor and one response variable, b is 2×1 and the resulting
model can be used to test correlations between two characters. However, XD
could also be multivariate, and can include more than one character that might
be related to y. This allows us to carry out the equivalent of multiple regression
in a phylogenetic context. Finally, ϵ are the residuals – the difference between
the y-values predicted by the model and their actual values. In traditional
regression, one assumes that the residuals are all normally distributed with the
same variance. By contrast, with GLS, one assumes that the residuals might
not be independent of each other; instead, they are multivariate normal with
expected mean zero and some variance-covariance matrix Ω.

In the case of Brownian motion, we can model the residuals as having variances
and covariances that follow the structure of the phylogenetic tree. In other
words, we can substitute our phylogenetic variance-covariance matrix C as the
matrix Ω. We can then carry out standard GLS analyses to estimate model
parameters:

(eq. 5.15)

b̂ = (X⊺
DΩ−1X⊺

D)−1X⊺
DΩ−1y = (X⊺

DC−1X⊺
D)−1X⊺

DC−1y

The first term in b̂ is the phylogenetic mean z̄(0). The other term in b̂ will be
an estimate for the slope of the relationship between y and x, the calculation of
which statistically controls for the effect of phylogenetic relationships.

Applying PGLS to mammal body mass and home range results in an identical
estimate of the slope and P-value as we obtain using independent contrasts.
PGLS also returns an estimate of the intercept of this relationship, which cannot
be obtained from the PICs.

84



Of course, another difference is that PICs and PGLS use regression, while the
approach outlined above tests for a correlation. These two types of statistical
tests are different. Correlation tests for a relationship between x and y, while
regression tries to find the best way to predict y from x. For correlation, it does
not matter which variable we call x and which we call y. However, in regression
we will get a different slope if we predict y given x instead of predicting x given
y. The model that is assumed by phylogenetic regression models is also different
from the model above, where we assumed that the two characters evolve under a
correlated Brownian motion model. By contrast, PGLS (and, implicitly, PICs)
assume that the deviations of each species from the regression line evolve under
a Brownian motion model. We can imagine, for example, that species can
freely slide along the regression line, but that evolving around that line can be
captured by a normal Brownian model. Another way to think about a PGLS
model is that we are treating x as a fixed property of species. The deviation of y
from what is predicted by x is what evolves under a Brownian motion model. If
this seems strange, that’s because it is! There are other, more complex models
for modeling the correlated evolution of two characters that make assumptions
that are more evolutionarily realistic (e.g. Hansen 1997); we will return to this
topic later in the book. At the same time, PGLS is a well-used method for
evolutionary regression, and is undoubtedly useful despite its somewhat strange
assumptions.

PGLS analysis, as described above, assumes that we can model the error struc-
ture of our linear model as evolving under a Brownian motion model. However,
one can change the structure of the error variance-covariance matrix to reflect
other models of evolution, such as Ornstein-Uhlenbeck. We return to this topic
in a later chapter.

Section 5.6: Summary

There are at least four methods for testing for an evolutionary correlation be-
tween continuous characters: likelihood ratio test, AIC model selection, PICs,
and PGLS. These four methods as presented all make the same assumptions
about the data and, therefore, have quite similar statistical properties. For ex-
ample, if we simulate data under a multivariate Brownian motion model, both
PICs and PGLS have appropriate Type I error rates and very similar power.
Any of these are good choices for testing for the presence of an evolutionary
correlation in your data.

Section 5.7: Footnotes

1: We might also want to carry out linear regression, which is related to corre-
lation analysis but distinct. We will show examples of phylogenetic regression
at the end of this chapter.
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2: Although the joint distribution of all species for a single trait is multivariate
normal (see previous chapters), individual changes along a particular branch of
a tree are univariate.

3: Another way to think about regression through the origin is to think of pairs
of contrasts across any node in the tree as two-dimensional vectors. Calculating
a vector correlation is equivalent to calculating a regression forced through the
origin.
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Chapter 6: Beyond Brownian Motion

Section 6.1: Introduction

Detailed studies of contemporary evolution have revealed a rich variety of pro-
cesses that influence how traits evolve through time. Consider the famous stud-
ies of Darwin’s finches, Geospiza, in the Galapagos islands carried out by Peter
and Rosemary Grant, among others (e.g. Grant and Grant 2011). These studies
have documented the action of natural selection on traits from one generation
to the next. One can see very clearly how changes in climate – especially the
amount of rainfall – affect the availability of different types of seeds (Grant
and Grant 2002). These changing resources in turn affect which individuals
survive within the population. When natural selection acts on traits that can
be inherited from parents to offspring, those traits evolve.

One can obtain a dataset of morphological traits, including measurements of
body and beak size and shape, along with a phylogenetic tree for several species
of Darwin’s finches. Imagine that you have the goal of analyzing the tempo and
mode of morphological evolution across these species of finch. We can start by
fitting a Brownian motion model to these data. However, a Brownian model
(which, as we learned in Chapter 3, corresponds to a few simple scenarios of
trait evolution) hardly seems realistic for a group of finches known to be under
strong and predictable directional selection.

Brownian motion is very commonly used in comparative biology: in fact, a
large number of comparative methods that researchers use for continuous traits
assumes that traits evolve under a Brownian motion model. The scope of other
models beyond Brownian motion that we can use to model continuous trait
data on trees is somewhat limited. However, more and more methods are being
developed that break free of this limitation, moving the field beyond Brownian
motion. In this chapter I will discuss these approaches and what they can tell
us about evolution. I will also describe how moving beyond Brownian motion
can point the way forward for statistical comparative methods.

In this chapter, I will consider four ways that comparative methods can move be-
yond simple Brownian motion models: by transforming the variance-covariance
matrix describing trait covariation among species, by incorporating variation in
rates of evolution, by accounting for evolutionary constraints, and by modeling
adaptive radiation and ecological opportunity. It should be apparent that the
models listed here do not span the complete range of possibilities, and so my
list is not meant to be comprehensive. Instead, I hope that readers will view
these as examples, and that future researchers will add to this list and enrich
the set of models that we can fit to comparative data.
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Section 6.2: Transforming the evolutionary variance-
covariance matrix

In 1999, Mark Pagel introduced three statistical models that allow one to test
whether data deviates from a constant-rate process evolving on a phylogenetic
tree (Pagel 1999a,b)1. Each of these three models is a statistical transformation
of the elements of the phylogenetic variance-covariance matrix, C, that we first
encountered in Chapter 3. All three can also be thought of as a transformation
of the branch lengths of the tree, which adds a more intuitive understanding
of the statistical properties of the tree transformations (Figure 6.1). We can
transform the tree and then simulate characters under a Brownian motion model
on the transformed tree, generating very different patterns than if they had been
simulated on the starting tree.

Figure 6.1. Branch length transformations effectively alter the relative rate of
evolution on certain branches in the tree. If we make a branch longer, there
is more “evolutionary time” for characters to change, and so we are effectively
increasing the rate of evolution along that branch. Image by the author, can be
reused under a CC-BY-4.0 license.

There are three Pagel tree transformations (lambda: λ, delta: δ, and kappa:
κ). I will describe each of them along with common methods for fitting Pagel
models under ML, AIC, and Bayesian frameworks. Pagel’s three transforma-
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tions can also be related to evolutionary processes, although those relationships
are sometimes vague compared to approaches based on explicit evolutionary
models rather than tree transformations (see below for more comments on this
distinction).

Perhaps the most commonly used Pagel tree transformation is λ. When using λ,
one multiplies all off-diagonal elements in the phylogenetic variance-covariance
matrix by the value of λ, restricted to values of 0 ≤ λ ≤ 1. The diagonal
elements remain unchanged. So, if the original matrix for r species is:

(Equation 6.1)

Co =


σ2

1 σ12 . . . σ1r

σ21 σ2
2 . . . σ2r

...
... . . . ...

σr1 σr2 . . . σ2
r


Then the transformed matrix will be:

(Equation 6.2)

Cλ =


σ2

1 λ · σ12 . . . λ · σ1r

λ · σ21 σ2
2 . . . λ · σ2r

...
... . . . ...

λ · σr1 λ · σr2 . . . σ2
r


In terms of branch length transformations, λ compresses internal branches while
leaving the tip branches of the tree unaffected (Figure 6.1). λ can range from
1 (no transformation) to 0 (which results in a complete star phylogeny, with all
tip branches equal in length and all internal branches of length 0). One can
in principle use some values of λ greater than one on most variance-covariance
matrices, although many values of λ > 1 result in matrices that are not valid
variance-covariance matrices and/or do not correspond with any phylogenetic
tree transformation. For this reason I recommend that λ be limited to values
between 0 and 1.

λ is often used to measure the “phylogenetic signal” in comparative data. This
makes intuitive sense, as λ scales the tree between a constant-rates model (λ = 1)
to one where every species is statistically independent of every other species in
the tree (λ = 0). Statistically, this can be very useful information. However,
there is some danger is in attributing a statistical result – either phylogenetic
signal or not – to any particular biological process. For example, phylogenetic
signal is sometimes called a “phylogenetic constraint.” But one way to obtain a
high phylogenetic signal (λ near 1) is to evolve traits under a Brownian motion
model, which involves completely unconstrained character evolution. Likewise, a
lack of phylogenetic signal – which might be called “low phylogenetic constraint”
– results from an OU model with a high α parameter (see below), which is a
model where trait evolution away from the optimal value is, in fact, highly
constrained. Revell et al. (2008) show a broad range of circumstances that
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can lead to patterns of high or low phylogenetic signal, and caution against
over-interpretation of results from analyses of phylogenetic signal, like Pagel’s λ.
Also worth noting is that statistical estimates of λ under a ML model tend to be
clustered near 0 and 1 regardless of the true value, and AIC model selection can
tend to prefer models with λ ̸= 0 even when data is simulated under Brownian
motion (Boettiger et al. 2012).

Pagel’s δ is designed to capture variation in rates of evolution through time.
Under the δ transformation, all elements of the phylogenetic variance-covariance
matrix are raised to the power δ, assumed to be positive. So, if our original C
matrix is given above (equation 6.1), then the δ-transformed version will be:

(Equation 6.3)

Cδ =


(σ2

1)δ (σ12)δ . . . (σ1r)δ

(σ21)δ (σ2
2)δ . . . (σ2r)δ

...
... . . . ...

(σr1)δ (σr2)δ . . . (σ2
r)δ


Since these elements represent the heights of nodes in the phylogenetic tree, then
δ can also be viewed as a transformation of phylogenetic node heights. When δ
is one, the tree is unchanged and one still has a constant-rate Brownian motion
process; when δ is less than 1, node heights are reduced, but deeper branches in
the tree are reduced less than shallower branches (Figure 6.1). This effectively
represents a model where the rate of evolution slows through time. By contrast,
δ > 1 stretches the shallower branches in the tree more than the deep branches,
mimicking a model where the rate of evolution speeds up through time. There
is a close connection between the δ model, the ACDC model (Blomberg et al.
2003), and Harmon et al.’s (2010) early burst model [see also Uyeda and Harmon
(2014), especially the appendix).

Finally, the κ transformation is sometimes used to capture patterns of “specia-
tional” change in trees. In the κ model, one raises all of the branch lengths in
the tree by the power κ (we require that κ ≥ 0). This has a complicated effect
on the phylogenetic variance-covariance matrix, as the effect that this transfor-
mation has on each covariance element depends on both the value of κ and the
number of branches that extend from the root of the tree to the most recent
common ancestor of each pair of species. So, if our original C matrix is given
by equation 6.1, the transformed version will be:

(Equation 6.4)

Co =
bk

1,1+bk
1,2···+bk

1,d1
bk

1−2,1+bk
1−2,2···+bk

1−2,d1−2
... bk

1−r,1+bk
1−r,2···+bk

1−r,d1−r

bk
2−1,1+bk

2−1,2···+bk
2−1,d1−2

bk
2,1+bk

2,2···+bk
2,d2

... bk
2−r,1+bk

2−r,2···+bk
2−r,d2−r

...
... . . . ...

bk
r−1,1+bk

r−1,2···+bk
r−1,d1−r

bk
r−2,1+bk

r−2,2···+bk
r−2,d1−2

... bk
r,1+bk

r,2···+bk
r,dr
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where bx,y is the branch length of the branch that is the most recent common
ancestor of taxa x and y, while dx,y is the total number of branches that one
encounters traversing the path from the root to the most recent common an-
cestor of the species pair specified by x, y (or to the tip x if just one taxon
is specified). Needless to say, this transformation is easier to understand as a
transformation of the tree branches themselves rather than of the associated
variance-covariance matrix.

When the κ parameter is one, the tree is unchanged and one still has a constant-
rate Brownian motion process; when κ = 0, all branch lengths are one. κ
values in between these two extremes represent intermediates (Figure 6.1). κ
is often interpreted in terms of a model where character change is more or less
concentrated at speciation events. For this interpretation to be valid, we have
to assume that the phylogenetic tree, as given, includes all (or even most) of the
speciation events in the history of the clade. The problem with this assumption
is that speciation events are almost certainly missing due to sampling: perhaps
some living species from the clade have not been sampled, or species that are
part of the clade have gone extinct before the present day and are thus not
sampled. There are much better ways of estimating speciational models that
can account for these issues in sampling (e.g. Bokma 2008; Goldberg and Igić
2012); these newer methods should be preferred over Pagel’s κ for testing for a
speciational pattern in trait data.

There are two main ways to assess the fit of the three Pagel-style models to data.
First, one can use ML to estimate parameters and likelihood ratio tests (or AICc

scores) to compare the fit of various models. Each represents a three parameter
model: one additional parameter added to the two parameters already needed to
describe single-rate Brownian motion. As mentioned above, simulation studies
suggest that this can sometimes lead to overconfidence, at least for the λ model.
Sometimes researchers will compare the fit of a particular model (e.g. λ) with
models where that parameter is fixed at its two extreme values (0 or 1; this is not
possible with δ). Second, one can use Bayesian methods to estimate posterior
distributions of parameter values, then inspect those distributions to see if they
overlap with values of interest (say, 0 or 1).

We can apply these three Pagel models to the mammal body size data discussed
in chapter 5, comparing the AICc scores for Brownian motion to that from the
three transformations. We obtain the following results:

Model Parameter estimates lnL AICc

Brownian motion σ2 = 0.088, θ = 4.64 -78.0 160.4
lambda σ2 = 0.085, θ = 4.64, λ = 1.0 -78.0 162.6
delta σ2 = 0.063, θ = 4.60, δ = 1.5 -77.7 162.0
kappa σ2 = 0.170, θ = 4.64, κ = 0.66 -77.3 161.1

Note that Brownian motion is the preferred model with the lowest AICc score,
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but also that all four AICc scores are within 3 units – meaning that we cannot
easily distinguish among them using our mammal data.

Section 6.3: Variation in rates of trait evolution across
clades

One assumption of Brownian motion is that the rate of change (σ2) is constant,
both through time and across lineages. However, some of the most interesting
hypotheses in evolution relate to differences in the rates of character change
across clades. For example, key innovations are evolutionary events that open
up new areas of niche space to evolving clades (Hunter 1998; reviewed in Alfaro
2013). This new niche space is an ecological opportunity that can then be filled
by newly evolved species (Yoder et al. 2010). If this were happening in a clade,
we might expect that rates of trait evolution would be elevated following the
acquisition of the key innovation (Yoder et al. 2010).

There are several methods that one can use to test for differences in the rate of
evolution across clades. First, one can compare the magnitude of independent
contrasts across clades; second, one can use model comparison approaches to
compare the fit of single- and multiple-rate models to data on trees; and third,
one can use a Bayesian approach combined with reversible-jump machinery to
try to find the places on the tree where rate shifts have occurred. I will explain
each of these methods in turn.

Section 6.3a: Rate tests using phylogenetic independent contrasts

One of the earliest methods developed to compare rates across clades is to com-
pare the magnitude of independent contrasts calculated in each clade (e.g. Gar-
land 1992). To do this, one first calculates standardized independent contrasts,
separating those contrasts that are calculated within each clade of interest. As
we noted in Chapter 5, these contrasts have arbitrary sign (positive or negative)
but if they are squared, represent independent estimates of the Brownian mo-
tion rate parameter (σ2). Basically, when rates of evolution are high, we should
see large independent contrasts in that part of the tree (Garland 1992).

In his original description of this approach, Garland (1992) proposed using a
statistical test to compare the absolute value of contrasts between clades (or
between a single clade and the rest of the phylogenetic tree). In particular, Gar-
land (1992) suggests using a t-test, as long as the absolute value of independent
contrasts are approximately normally distributed. However, under a Brownian
motion model, the contrasts themselves – but not the absolute values of the
contrasts – should be approximately normal, so it is quite likely that absolute
values of contrasts will strongly violate the assumptions of a t-test.

In fact, if we try this test on mammal body size, contrasting the two major
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Figure 6.2. Rate tests comparing carnivores (black) with other mammals (red;
Panel A) using data from Garland (1992). Box-plots show only a slight differ-
ence in the absolute value of independent contrasts for the two clades, and the
distribution of absolute values of contrasts is strongly skewed. Image by the
author, can be reused under a CC-BY-4.0 license.
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clades in the tree (carnivores versus non-carnivores, Figure 6.2A), there looks
to be a small difference in the absolute value of contrasts (Figure 6.2B). A t-test
is not significant (Welch two-sample t-test P = 0.42), but we also can see that
the distribution of PIC absolute values is strongly skewed (Figure 6.2C).

There are other simple options that might work better in general. For example,
one could also compare the magnitudes of the squared contrasts, although these
are also not expected to follow a normal distribution. Alternatively, we can
again follow Garland’s (1992) suggestion and use a Mann-Whitney U-test, the
nonparametric equivalent of a t-test, on the absolute values of the contrasts.
Since Mann-Whitney U tests use ranks instead of values, this approach will not
be sensitive to the fact that the absolute values of contrasts are not normal. If
the P-value is significant for this test then we have evidence that the rate of
evolution is greater in one part of the tree than another.

In the case of mammals, a Mann-Whitney U test also shows no significant
differences in rates of evolution between carnivores and other mammals (W =
251, P = 0.70).

Section 6.3b: Rate tests using maximum likelihood and AIC

One can also carry out rate comparisons using a model-selection framework
(O’Meara et al. 2006b; Thomas et al. 2006). To do this, we can fit single- and
multiple-rate Brownian motion models to a phylogenetic tree, then compare
them using a model selection method like AICc. For example, in the example
above, we tested whether or not one subclade in the mammal tree (carnivores)
has a very different rate of body size evolution than the rest of the clade. We
can use an ML-based model selection method to compare the fit of a single-rate
model to a model where the evolutionary rate in carnivores is different from the
rest of the clade, and use this test evaluate the support for that hypothesis.

This test requires the likelihood for a multi-rate Brownian motion model on a
phylogenetic tree. We can derive such an equation following the approach pre-
sented in Chapter 4. Recall that the likelihood equations for (constant-rate)
Brownian motion use a phylogenetic variance-covariance matrix, C, that is
based on the branch lengths and topology of the tree. For single-rate Brow-
nian motion, the elements in C are derived from the branch lengths in the
tree. Traits are drawn from a multivariate normal distribution with variance-
covariance matrix:

(Equation 6.5)
VH1 = σ2Ctree

One simple way to fit a multi-rate Brownian motion model is to construct sep-
arate C matrices, one for each rate category in the tree. For example, imagine
that most of a clade evolves under a Brownian motion model with rate σ2

1 , but
one clade in the tree evolves at a different (higher or lower) rate, σ2

2 . One can
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construct two C matrices: the first matrix, C1, includes branches that evolve
under rate σ2

1 , while the second, C2, includes only branches that evolve under
rate σ2

2 . Since all branches in the tree are included in one of these two cat-
egories, it will be true that Ctree = C1 + C2. For any particular values of
these two rates, traits are drawn from a multivariate normal distribution with
variance-covariance matrix:

(Equation 6.6)
VH2 = σ2

1C1 + σ2
2C2

We can now treat this as a model comparison-problem, contrasting H1: traits on
the tree evolved under a constant-rate Brownian motion model, with H2: traits
on the tree evolved under a multi-rate Brownian motion model. Note that H1
is a special case of H2 when σ2

1 = σ2
2 ; that is, these two models are nested and

can be compared using a likelihood ratio test. Of course, one can also compare
the two models using AICc.

For the mammal body size example, you might recall our ML single-rate Brow-
nian motion model (σ2 = 0.088, z̄(0) = 4.64, lnL = −78.0, AICc = 160.4).
We can compare that to the fit of a model where carnivores get their own rate
parameter (σ2

c ) that might differ from that of the rest of the tree (σ2
o). Fitting

that model, we find the following maximum likelihood parameter estimates:
σ̂2

c = 0.068, σ̂2
o = 0.01, ˆ̄z(0) = 4.51). Carnivores do appear to be evolving

more rapidly. However, the fit of this model is not substantially better than the
single-rate Brownian motion (lnL = −77.6, AICc = 162.3).

There is one complication, which is how to deal with the actual branch along
which the rate shift is thought to have occurred. O’Meara et al. (2006b) describe
“censored” and “noncensored” versions of their test, which differ in whether or
not branches where rate shifts actually occur are included in the calculation.
In the censored version of the test, O’Meara et al. (2006b) omit the branch
where we think a shift occurred, while in the noncensored version O’Meara
et al. (2006b) include that branch in one of the two rate categories (this is
what I did in the example above, adding the stem branch of carnivores in the
“non-carnivore” category). One could also specify where, exactly, the rate shift
occurred along the branch in question, placing part of the branch in each of
the two rate categories as appropriate. However, since we typically have little
information about what happened on particular branches in a phylogenetic tree,
results from these two approaches are not very different – unless, as stated by
O’Meara et al. (2006b), unusual evolutionary processes have occurred on the
branch in question.

A similar approach was described by Thomas et al. (2006) but considers differ-
ences across clades to include changes in any of the two parameters of a Brownian
motion model (σ2, z̄(0), or both). Remember that z̄(0) is the expected mean of
species within a clade under a Brownian motion, but also represents the starting
value of the trait at time zero. Allowing z̄(0) to vary across clades effectively
allows different clades to have different “starting points” in phenotype space. In
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the case of comparing a monophyletic subclade to the rest of a tree, Thomas
et al.’s (2006) approach is equivalent to the “censored” test described above.
However, one drawback to both the Thomas et al. (2006) approach and the
“censored” test is that, because clades each have their own mean, we no longer
can tie the model that we fit using likelihood to any particular evolutionary
process. Mathematically, changing z̄(0) in a subclade postulates that the trait
value changed somehow along the branch leading to that clade, but we do not
specify the way that the trait changed – the change could have been gradual or
instantaneous, and no amount or pattern of change is more or less likely than
anything else. Of course, one can describe evolutionary scenarios that might act
like this process - but we begin to lose any potential tie to explicit evolutionary
processes.

Section 6.3c: Rate tests using Bayesian MCMC

It is also possible to carry out this test in a Bayesian MCMC framework. The
simplest way to do that would be to fit model H2 above, that traits on the tree
evolved under a multi-rate Brownian motion model, in a Bayesian framework.
We can then specify prior distributions and sample the three model parameters
(z̄(0), σ2

1 , and σ2
2) through our MCMC. At the end of our analysis, we will have

posterior distributions for the three model parameters. We can test whether
rates differ among clades by calculating a posterior distribution for the compos-
ite parameter σ2

diff = σ2
1 − σ2

2 . The proportion of the posterior distribution
for σ2

diff that is positive or negative gives the posterior probability that σ2
1 is

greater or less than σ2
2 , respectively.

Perhaps, though, researchers are unsure of where, exactly, the rate shift might
have occurred, and want to incorporate some uncertainty in their analysis. In
some cases, rate shifts are thought to be associated with some other discrete
character, such as living on land (state 0) or in the water (1). In such cases, one
way to proceed is to use stochastic character mapping (see Chapter 8) to map
state changes for the discrete character on the tree, and then run an analysis
where rates of evolution of the continuous character of interest depend on the
mapping of our discrete states. This protocol is described most fully by Revell
(2013), who also points out that rate estimates are biased to be more similar
when the discrete character evolves quickly.

It is even possible to explore variation in Brownian rates without invoking par-
ticular a priori hypotheses about where the rates might change along branches
in a tree. These methods rely on reversible-jump MCMC, a Bayesian statistical
technique that allows one to consider a large number of models, all with different
numbers of parameters, in a single Bayesian analysis. In this case, we consider
models where each branch in the tree can potentially have its own Brownian
rate parameter. By constraining sets of these rate parameters to be equal to
one another, we can specify a huge number of models for rate variation across
trees. The reversible-jump machinery, which is beyond the scope of this book,
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allows us to generate a posterior distribution that spans this large set of models
where rates vary along branches in a phylogenetic tree (see Eastman et al. 2011
for details).

Section 6.4: Non-Brownian evolution under stabilizing se-
lection

We can also consider the case where a trait evolves under the influence of sta-
bilizing selection. Assume that a trait has some optimal value, and that when
the population mean differs from the optimum the population will experience
selection towards the optimum (Figure 6.3). As I will show below, when traits
evolve under stabilizing selection with a constant optimum, the pattern of traits
through time can be described using an Ornstein-Uhlenbeck (OU) model. It is
worth mentioning, though, that this is only one (of many!) models that follow
an OU process over long time scales. In other words, even though this model can
be described by OU, we cannot make inferences the other direction and claim
that OU means that our population is under constant stabilizing selection. In
fact, we will see later that we can almost always rule this simple version of the
OU model out over long time scales by looking at the actual parameter values
of the model compared to what we know about species’ population sizes and
trait heritabilities.

Figure 6.3. Plot of species trait (x axis) versus fitness (y axis) showing a hy-
pothetical landscape that would produce stabilizing selection. Image by the
author, can be reused under a CC-BY-4.0 license.

We can follow the modeling approach from chapter 3 to derive the expected
distribution of species’ traits on a tree under stabilizing selection. The derivation
is a bit long and complicated, so I have moved it to an appendix of this chapter.
For now, all you need to know is that we can write down the likelihood of an
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OU model on a phylogenetic tree (see equation 6.58-6.60, below).

We can fit an OU model to data in a similar way to how we fit BM models in
the previous chapters. For any given parameters (z̄0, σ2, α, and θ) and a phylo-
genetic tree with branch lengths, one can calculate an expected vector of species
means and a species variance-covariance matrix. One then uses the likelihood
equation for a multivariate normal distribution to calculate the likelihood of
this model. This likelihood can then be used for parameter estimation in either
a ML or a Bayesian framework.

We can illustrate how this works by fitting an OU model to the mammal body
size data that we have been discussing. Using ML, we obtain parameter esti-
mates ˆ̄z0 = 4.60, σ̂2 = 0.10, α̂ = 0.0082, and θ̂ = 4.60. This model has a lnL of
-77.6, a little higher than BM, but an AICc score of 161.2, worse than BM. We
still prefer Brownian motion for these data. Over many datasets, though, OU
models fit better than Brownian motion (see Harmon et al. 2010; Pennell and
Harmon 2013).

Section 6.6: Early burst models

Adaptive radiations are a slippery idea. Many definitions have been proposed,
some of which contradict one another (reviewed in Yoder et al. 2010). Despite
some core disagreement about the concept of adaptive radiations, many dis-
cussions of the phenomenon center around the idea of “ecological opportunity.”
Perhaps adaptive radiations begin when lineages gain access to some previously
unexploited area of niche space. These lineages begin diversifying rapidly, form-
ing many and varied new species. At some point, though, one would expect that
the ecological opportunity would be “used up,” so that species would go back to
diversifying at their normal, background rates (Yoder et al. 2010). These ideas
connect to Simpson’s description of evolution in adaptive zones. According to
Simpson (1945), species enter new adaptive zones in one of three ways: dispersal
to a new area, extinction of competitors, or the evolution of a new trait or set
of traits that allow them to interact with the environment in a new way.

One idea, then, is that we could detect the presence of adaptive radiations by
looking for bursts of trait evolution deep in the tree. If we can identify clades,
like Darwin’s finches, for example, that might be adaptive radiations, we should
be able to uncover this “early burst” pattern of trait evolution.

The simplest way to model an early burst of evolution in a continuous trait
is to use a time-varying Brownian motion model. Imagine that species in a
clade evolved under a Brownian motion model, but one where the Brownian
rate parameter (σ2) slowed through time. In particular, we can follow Harmon
et al. (2010) and define the rate parameter as a function of time, as:

(Equation 6.7)
σ2(t) = σ2

0ebt
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We describe the rate of decay of the rate using the parameter b, which must be
negative to fit our idea of adaptive radiations. The rate of evolution will slow
through time, and will decay more quickly if the absolute value of b is large.

This model also generates a multivariate normal distribution of tip values. Har-
mon et al. (2010) followed Blomberg’s “ACDC” model (2003) to write equations
for the means and variances of tips on a tree under this model, which are:

(Equations 6.8-10)

µi(t) = z̄0

Vi(t) = σ2
0

ebTi −1
b Vij(t) = σ2

0
ebsij −1

b

Again, we can generate a vector of means and a variance-covariance matrix
for this model given parameter values (z̄0, σ2, and b) and a phylogenetic tree.
We can then use the multivariate normal probability distribution function to
calculate a likelihood, which we can then use in a ML or Bayesian statistical
framework.

For mammal body size, the early burst model does not explain patterns of body
size evolution, at least for the data considered here (ˆ̄z0 = 4.64, σ̂2 = 0.088,
b̂ = −0.000001, lnL = −78.0, AICc = 162.6).

Section 6.7: Peak shift models

A second model considered by Hansen and Martins (1996) describes the circum-
stance where traits change in a punctuated manner. One can imagine a scenario
where species evolve on an adaptive landscape with many peaks; usually, pop-
ulations stay on a single peak and phenotypes do not change, but occasionally
a population will transition from one peak to another. We can either assume
that these changes occur at random times, defining an average interval between
peak shifts, or we can associate shifts with other traits that we map on the
phylogenetic tree (for example, major geographic dispersal or vicariance events,
or the evolution of certain traits).

We have developed peak shift models by integrating OU models and reversible-
jump MCMC (Uyeda and Harmon 2014). The mathematics of this model are
beyond the scope of this book, but follow closely from the description of the
multi-rate Brownian motion model described in the section “variation in rates
of trait evolution across clades,” above. In this case, when we change model pa-
rameters, we move among OU regimes, and can alter the OU model parameters
σ2 or α. The approach can be used to either identify parts of the tree that are
evolving in separate regimes or to test particular hypotheses about the drivers
of evolution.
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Section 6.8: Summary

In this chapter, I have described a few models that represent alternatives to
Brownian motion, which is still the dominant model of trait evolution used in
the literature. These examples really represent the beginnings of a whole set of
models that one might fit to biological data. The best applications of this type
of approach, I think, are in testing particular biologically motivated hypotheses
using comparative data.

Section 6.9: Footnotes

1: Pagel’s original models were initially focused on discrete characters, but - as
he later pointed out - apply equally well to continuous characters.

Section 6.10: Appendix: Deriving an OU model under sta-
bilizing selection

We can first consider the evolution of the trait on the “stem” branch, before
the divergence of species A and B. We model stabilizing selection with a single
optimal trait value, located at θ. An example of such a surface is plotted as
Figure 6.3. We can describe fitness of an individual with phenotype z as:

(Equation 6.11)
W = e−γ(z−θ)2

We have introduced a new variable, γ, which captures the curvature of the
selection surface. To simplify the calculations, we will assume that stabilizing
selection is weak, so that γ is small.

We can use a Taylor expansion of this function to approximate equation 6.7
using a polynomial. Our assumption that γ is small means that we can ignore
terms of order higher than γ2:

(Equation 6.12)
W = 1 − γ(z − θ)2

This makes good sense, since a quadratic equation is a good approximation
of the shape of a normal distribution near its peak. The mean fitness in the
population is then:

(Equation 6.13)
W̄ = E[W ] = E[1 − γ(z − θ)2]
= E[1 − γ(z2 − 2zθ + θ2)]
= 1 − γ(E[z2] − E[2zθ] + E[θ2])
= 1 − γ(z̄2 − Vz − 2z̄θ + θ2)
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We can find the rate of change of fitness with respect to changes in the trait
mean by taking the derivative of (6.9) with respect to z̄:

(Equation 6.14)
∂W̄

∂z̄
= −2γz̄ + 2γθ = 2γ(θ − z̄)

We can now use Lande’s (1976) equation for the dynamics of the population
mean through time for a trait under selection:

(Equation 6.15)

∆z̄ = G

W̄

∂W̄

∂z̄

Substituting equations 6.9 and 6.10 into equation 6.11, we have:

(Equation 6.16)

∆z̄ = G

W̄

∂W̄

∂z̄
= G

1 − γ(z̄2 − Vz − 2z̄θ + θ2)
2γ(θ − z̄)

Then, simplifying further with another Taylor expansion, we obtain:

(Equation 6.17)
z̄′ = z̄ + 2Gγ(θ − z̄) + δ

Here, z̄ is the species’ trait value in the previous generation and z̄′ in the next,
while G is the additive genetic variance in the population, γ the curvature of
the selection surface, θ the optimal trait value, and δ a random component
capturing the effect of genetic drift. We can find the expected mean of the trait
over time by taking the expectation of this equation:

(Equation 6.18)
E[z̄′] = µ′

z = µz + 2Gγ(θ − µz)

We can then solve this differential equations given the starting condition µz(0) =
z̄(0). Doing so, we obtain:

(Equation 6.19)
µz(t) = θ + e−2Gtγ(z̄(0) − θ)

We can take a similar approach to calculate the expected variance of trait values
across replicates. We use a standard expression for variance:

(Equations 6.20-22)

V ′
z = E[z̄′2] + E[z̄′]2

V ′
z = E[(z̄ + 2Gγ(θ − z̄) + δ)2] − E[z̄ + 2Gγ(θ − z̄) + δ]2

V ′
z = G/n + (1 − 2Gγ)2Vz
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If we assume that stabilizing selection is weak, we can simplify the above ex-
pression using a Taylor series expansion:

(Equation 6.23)
V ′

z = G/n + (1 − 4Gγ)Vz

We can then solve this differential equation with starting point Vz(0) = 0:

(Equation 6.24)

Vz(t) = e−4Gtγ − 1
4nγ

Equations 6.15 and 6.20 are equivalent to a standard stochastic model for con-
strained random walks called an Ornstein-Uhlenbeck process. Typical Ornstein-
Uhlenbeck processes have four parameters: the starting value (z̄(0)), the opti-
mum (θ), the drift parameter (σ2), and a parameter describing the strength of
constraints (α). In our parameterization, z̄(0) and θ are as given, α = 2G, and
σ2 = G/n.

We now need to know how OU models behave when considered along the
branches of a phylogenetic tree. In the simplest case, we can describe the joint
distribution of two species, A and B, descended from a common ancestor, z.
Using equation 6.17, expressions for trait values of species A and B are:

(Equations 6.25-26)
ā′ = ā + 2Gγ(θ − ā) + δ

b̄′ = b̄ + 2Gγ(θ − b̄) + δ

Expected values of these two equations give equations for the means, using
equation 6.19:

(Equations 6.27-28)
µ′

a = µa + 2Gγ(θ − µa)
µ′

b = µb + 2Gγ(θ − µb)

We can solve this system of differential equations, given starting conditions
µa(0) = ā0 and µb(0) = b̄0:

(Equations 6.29-30)
µ′

a(t) = θ + e−2Gtγ(ā0 − θ)
µ′

b(t) = θ + e−2Gtγ(b̄0 − θ)

However, we can also note that the starting value for both a and b is the same
as the ending value for species z on the root branch of the tree. If we denote
the length of that branch as t1 then:

(Equation 6.31)

E[ā0] = E[b̄0] = E[z̄(t1)] = e−2Gt1γ(z̄0 − θ)
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Substituting this into equations (6.25-26):

(Equations 6.32-33)

µ′
a(t) = θ + e−2Gγ(t1+t)(z̄0 − θ)

µ′
b(t) = θ + e−2Gγ(t1+t)(z̄0 − θ)

Equations

We can calculate the expected variance across replicates of species A and B, as
above:

(Equations 6.34-36)

V ′
a = E[ā′2] + E[ā′]2

V ′
a = E[(ā + 2Gγ(θ − ā) + δ)2] + E[ā + 2Gγ(θ − ā) + δ]2

V ′
a = G/n + (1 − 2Gγ)2Va

Similarly,

(Equations 6.37-38)
V ′

b = E[b̄′2] + E[b̄′]2
V ′

b = G/n + (1 − 2Gγ)2Vb

Again we can assume that stabilizing selection is weak, and simplify these ex-
pressions using a Taylor series expansion:

(Equations 6.39-40)
V ′

a = G/n + (1 − 4Gγ)Va

V ′
b = G/n + (1 − 4Gγ)Vb

We have a third term to consider, the covariance between species A and B due
to their shared ancestry. We can use a standard expression for covariance to set
up a third differential equation:

(Equations 6.41-43)

V ′
ab = E[ā′b̄′] + E[ā′]E[b̄′]

V ′
ab = E[(ā + 2Gγ(θ − ā) + δ)(b̄ + 2Gγ(θ − b̄) + δ)] + E[ā

+2Gγ(θ − ā) + δ]E[ā + 2Gγ(θ − ā) + δ]
V ′

ab = Vab(1 − 2Gγ)2

We again use a Taylor series expansion to simplify:

(Equations 6.44)
V ′

ab = −4VabGγ

Note that under this model the covariance between A and B decreases through
time following their divergence from a common ancestor.
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We now have a system of three differential equations. Setting initial conditions
Va(0) = Va0, Vb(0) = Vb0, and Vab(0) = Vab0, we solve to obtain:

(Equations 6.45-47)
Va(t) = 1−e−4Gγt

4nγ + Va0

Vb(t) = 1−e−4Gγt

4nγ + Vb0
Vab(t) = Vab0e−4Gγt

We can further specify the starting conditions by noting that both the variance
of A and B and their covariance have an initial value given by the variance of z
at time t1:

(Equations 6.48)

Va0 = Vab0 = Vab0 = Vz(t1) = e−4Gγt1 − 1
4nγ

Substituting 6.44 into 6.41-43, we obtain:

(Equations 6.49-51)
Va(t) = e−4Gγ(t1+t)−1

4nγ

Vb(t) = e−4Gγ(t1+t)−1
4nγ

Vab(t) = e−4Gγt−e−4Gγ(t1+t)

4nγ

Under this model, the trait values follow a multivariate normal distribution;
one can calculate that all of the other moments of this distribution are zero.
Thus, the set of means, variances, and covariances completely describes the
distribution of A and B. Also, as γ goes to zero, the selection surface becomes
flatter and flatter. Thus at the limit as γ approaches 0, these equations are
equal to those for Brownian motion (see chapter 4).

This quantitative genetic formulation – which follows Lande (1976) – is different
from the typical parameterization of the OU model for comparative methods.
We can obtain the “normal” OU equations by substituting α = 2Gγ and σ2 =
G/n:

(Equations 6.52-54)

Va(t) = σ2

2α (e−2α(t1+t) − 1)
Vb(t) = σ2

2α (e−2α(t1+t) − 1)
Vab(t) = σ2

2α e−2αt(1 − e−2αt1)

These equations are mathematically equivalent to the equations in Butler et al.
(2004) applied to a phylogenetic tree with two species.

We can easily generalize this approach to a full phylogenetic tree with n taxa.
In that case, the n species trait values will all be drawn from a multivariate
normal distribution. The mean trait value for species i is then:
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(Equation 6.55)
µi(t) = θ + e−2GγTi(z̄0 − θ)

Here Ti represents the total branch length separating that species from the root
of the tree. The variance of species i is:

(Equation 6.56)

Vi(t) = e−4GγTi − 1
4nγ

Finally, the covariance between species i and j is:

(Equation 6.57)

Vij(t) = e−4Gγ(Ti−sij) − e−4GγTi

4nγ

Note that the above equation is only true when Ti = Tj – which is only true
for all i and j if the tree is ultrametric. We can substitute the normal OU
parameters, α and σ2, into these equations:

(Equations 6.58-60)

µi(t) = θ + e−αTi(z̄0 − θ)
Vi(t) = σ2

2α e−2αTi − 1
Vij(t) = σ2

2α (e−2α(Ti−sij) − e−2αTi)
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Chapter 7: Models of discrete character evolution

Section 7.1: Limblessness as a discrete trait

Squamates, the clade that includes all living species of lizards, are well known
for their diversity. From the gigantic Komodo dragon of Indonesia (Figure
7.1A, Varanus komodoensis) to tiny leaf chameleons of Madagascar (Figure 7.1B,
Brookesia), squamates span an impressive range of form and ecological niche use
(Vitt et al. 2003; Pianka et al. 2017). Even the snakes (Figure 7.1C and D),
extraordinarily diverse in their own right (~3,500 species), are actually a clade
that is nested within squamates (Streicher and Wiens 2017). The squamate
lineage that is ancestral to snakes became limbless about 170 million years ago
(see Hedges et al. 2006) – and also underwent a suite of changes to their head
shape, digestive tract, and other traits associated with their limbless lifestyle. In
other words, snakes are lizards – highly modified lizards, but lizards nonetheless.
And snakes are not the only limbless lineage of squamates. In fact, lineages
within squamates have lost their limbs over and over again through their history
(e.g. Figure 7.1E and F), with some estimates that squamates have lost their
limbs at least 26 times in the past 240 million years (Brandley et al. 2008).

Limblessness is an example of a discrete trait – a trait that can occupy one of a
set of distinct character states. Analyzing the evolution of discrete traits requires
a different modeling approach than what we used for continuous traits. In this
chapter, I will discuss the Mk model (Lewis 2001), which is a general approach
to modeling the evolution of discrete traits on trees. Fitting this model to
comparative data will help us understand the evolution of traits like limblessness
where species can be placed into one of a number of discrete character states.

Section 7.2: Modeling the evolution of discrete states

So far, we have only dealt with continuously varying characters. However, many
characters of interest to biologists are best defined as characters with a set
number of fixed states. For limblessness in squamates, each species is either
legless (state 0) or not (state 1; actually, there are some species that might be
considered “intermediate” Brandley et al. 2008, but we will ignore those for
now). We might have particular questions about the evolution of limblessness
in squamates. For example, how many times this character has changed in the
evolutionary history of squamates? How often does limblessness evolve? Do
limbs ever re-evolve? Is the evolution of limblessness related to some other
aspect of the lives of these reptiles?

We will consider discrete characters where each species might exhibit one of k
states. (In the limbless example above, k = 2). For characters with more than
two states, there is a key distinction between ordered and unordered characters.
Ordered characters can be placed in an order so that transitions only occur
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Figure 7.1. Squamates, legged and legless. A. Komodo dragon, B. Brooke-
sia chameleon, C. False coral (Oxyrhopus guibei) and D. hognose snakes, E.
a pygopodid - a limbless gecko and F. an anguid, another legless lizard.
Photo credits: A: User:Raul654 / Wikimedia Commons / CC-BY-SA-3.0, B.
Brian Gratwicke / CC-BY-2.0, C. User:Gionorossi / Wikimedia Commons
/ CC-BY-SA-4.0, D. User:Bladerunner8u / Wikimedia Commons / CC-BY-
SA-3.0, E. User:Smacdonald / Wikimedia Commons / CC-BY-SA-2.5, F.
User:Marek_bydg / Wikimedia Commons / CC-BY-SA-3.0.
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between adjacent states. For example, I might include “intermediate” species
that are somewhere in between limbed and limbless – for example, the “mer-
maid skinks” (Sirenoscincus) from Madagascar, so called because they lack hind
limbs (Figure 7.2, Moch and Senter 2011). An ordered model might only allow
transitions between limbless and intermediate, and intermediate and limbed; it
would be impossible under such a model to go directly from limbed to limbless
without first becoming intermediate. For unordered characters, any state can
change into any other state. In this chapter, I will focus mainly on unordered
characters; we will return to ordered characters later in the book.

Figure 7.2. Mermaid skink, Aurélien Miralles / Wikimedia Commons CC-BY-
SA-3.0.

Most work on the evolution of discrete characters on phylogenetic trees has
focused on the evolution of gene or protein sequences. Gene sequences are made
up of four character states (A, C, T, and G for DNA). Models of sequence
evolution allow transitions among all of these states at certain rates, and may
allow transition rates to vary across sites, among clades, or through time. There
are a huge number of named models that have been applied to this problem
(e.g. Jukes-Cantor, JC; General Time-Reversible, GTR; and many more, Yang
2006), and a battery of statistical approaches are available to fit these models
to data (e.g. Posada 2008).

Any discrete character can be modeled in a similar way as gene sequences. When
considering phenotypic characters, we should keep in mind two main differences
from the analysis of DNA sequences. First, arbitrary discrete characters may
have any number of states (beyond the four associated with DNA sequence data).
Second, characters are typically analyzed independently rather than combining
long sets of characters and assuming that they share the same model of change.
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Section 7.3: The Mk Model

The most basic model for discrete character evolution is called the Mk model.
First developed for trait data by Pagel (1994; although the name Mk comes
from Lewis 2001). The Mk model is a direct analogue of the Jukes-Cantor (JC)
model for sequence evolution. The model applies to a discrete character having
k unordered states. Such a character might have k = 2, k = 3, or even more
states. Evolution involves changing between these k states (Figure 7.3).

Figure 7.3. Examples of discrete characters with (A) k = 2, (B) k = 3, and (C)
k = 4 states. Image by the author, can be reused under a CC-BY-4.0 license.

The basic version of the Mk model assumes that transitions among these states
follow a Markov process. This means that the probability of changing from one
state to another depends only on the current state, and not on what has come
before. For example, it makes no difference if a lineage has just evolved the
trait of “feathers,” or whether they have had feathers for millions of years – the
probability of evolving a different character state is the same in both cases. The
basic Mk model also assumes that every state is equally likely to change to any
other state.

For the basic Mk model, we can denote the instantaneous rate of change between
states using the parameter q. In general, qij is called the instantaneous rate
between character states i and j. It is defined as the limit of the rate measured
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over very short time intervals1.

Again, for the basic Mk model, instantaneous rates between all pairs of charac-
ters are equal; that is, qij = qmn for all i ̸= j and m ̸= n.

We can summarize general Markov models for discrete characters using a tran-
sition rate matrix (Lewis 2001):

(eq. 7.1)

Q =


−d1 q12 . . . q1k

q21 −d2 . . . q2k

...
... . . . ...

qk1 qk2 . . . −dk


Note that the instantaneous rates are only entered into the off-diagonal parts
of the matrix. Along the diagonal, these matrices always have a set of negative
numbers. For any Q matrix, the sum of all the elements in each row is zero – a
necessary condition for a transition rate matrix. Because of this, each negative
number has a value, di, equal to the sum of all of the other numbers in the row.
For example,

(eq. 7.2)

d1 =
k∑

i=2
q1i

For a two-state Mk model, k = 2 and rates are symmetric so that q12 = q21. In
this case, we can write the transition rate matrix as:

(eq. 7.3)

Q =
[
−q q
q −q

]
Likewise, for k = 3, the transition rate matrix is:

(eq. 7.4)

Q =

−2q q q
q −2q q
q q −2q


In general, the k-state transition matrix for a basic Mk model is:

(eq. 7.5)

Q =


1 − k 1 . . . 1

1 1 − k . . . 1
...

... . . . ...
1 1 . . . 1



110



Once we have this transition rate matrix, we can calculate the probability distri-
bution of trait states after any time interval t using the equation (Lewis 2001):

(eq. 7.6)
P(t) = eQt

This equation looks simple, but calculating P (t) involves matrix exponentiation
– raising e to a power defined by a matrix. This calculation is substantially
different from raising e to the power defined by each element of a matrix2. The
result is a matrix, P, of transition probabilities. Each element in this matrix
(pij) gives the probability that starting in state i you will end up in state j over
that time interval t. For the standard Mk model, there is a general solution to
this equation:

(eq. 7.7)
pii(t) = 1

k + k−1
k e−kqt

pij(t) = 1
k − 1

k e−kqt

In particular, when k = 2,

(eq. 7.8)
pii(t) = 1

k + k−1
k e−kqt = 1

2 + 2−1
2 e−2qt = 1+e−2qt

2
pij(t) = 1

k − 1
k e−kqt = 1

2 − 1
2 e−2qt = 1−e−2qt

2

If we consider what happens when time gets very large in these equations, we
see an interesting pattern. Any term that has e−t in it gets closer and closer to
zero as t increases. Because of this, for all values of k, each pij(t) converges to
a constant value, 1/k. This is the stationary distribution of character states, π,
defined as the equilibrium frequency of character states if the process is run many
times for a long enough time period. In general, the stationary distribution of
an Mk model is:

(eq. 7.9)
π =

[
1/k 1/k . . . 1/k

]
In the case of k = 2,

(eq. 7.10)
π =

[
1/2 1/2

]
Section 7.4: The Extended Mk Model

The Mk model assumes that transitions among all possible character states
occur at the same rate. However, that may not be a valid assumption. For
example, it is often supposed that it is easier to lose a complex character than
to gain one. We might want to fit models that allow for such asymmetries in
rates.
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For models of DNA sequence evolution there are a wide range of models allowing
different rates between distinct types of nucleotides (Yang 2006). Unequal rates
are usually incorporated into the Mk model in two ways. First, one can consider
the symmetric model (SYM; Paradis et al. 2004). In the symmetric model, the
rate of change between any two character states is the same forwards as it is
backwards (that is, rates of change are symmetric; qij = qji). The rate for a
particular pair of states might differ from other pairs of character states. Note
that when k = 2 the symmetric model is identical to the basic Mk model. The
rate matrix for this model has as many free rate parameters as there are pairs
of character states:

(eq. 7.11)

p = k(k − 1)
2

However, in general symmetric models will not have stationary distributions
where all character states occur at equal frequencies, as noted above for the
Mk model. We can account for these uneven frequencies by adding additional
parameters to our model:

(eq. 7.12)
πSY M =

[
π1 π2 . . . 1 −

∑n−1
i=1 πi

]
Note that we only have to specify n − 1 equilibrium frequencies, since we know
that they all sum to one. We have added n − 1 new parameters, for a total
number of parameters:

(eq. 7.13)

p = k(k − 1)
2

+ n − 1

To obtain a Q-matrix for this model, we combine the information from both the
relative transition rates and equilibrium frequencies:

(eq. 7.14)

Q =


· r1 . . . rn−1

r1 · . . .
...

...
... · rk(k−1)/2

rn−1 . . . rk(k−1)/2 ·




π1 0 0 0
0 π2 0 0

0 0
. . . 0

0 0 0 πn


In this equation I have left the diagonal of the first matrix as dots. The final
Q-matrix must have all rows sum to one, so one can adjust the values of that
matrix after the multiplication step.

In the case of a two-state model, for example, we can create a model where
the forward rate is double the backward rate, and the equilibrium frequency of
character one is 0.75. Then:
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(eq. 7.15)

Q =
[

· 1
2 ·

] [
0.75 0

0 0.25

]
=

[
· 0.25

1.5 ·

]
=

[
−0.25 0.25

1.5 −1.5

]

It is worth noting that this approach of setting parameters that define equi-
librium state frequences, although borrowed from molecular evolution, is not
completely standard in the comparative methods literature. One also sees equi-
librium frequencies treated as a fixed property of the model, and assumed to be
either equal across states or tied directly to the parameters in the Q-matrix.

The second common extension of the Mk model is called the all-rates-different
model (ARD; Paradis et al. 2004). In this model every possible type of transi-
tion can have a different rate. There are thus k(k − 1) free rate parameters for
this model, and again n − 1 parameters to specify the equilibrium frequencies
of the character states.

The same algorithm can be used to calculate the likelihood for both of these
extended Mk models (SYM and ARD). These models have more parameters
than the standard Mk. To find maximum likelihood solutions, we must optimize
the likelihood across the entire set of unknown parameters (see Chapter 7).

Section 7.5: Simulating the Mk model on a tree

We can also use the equations above to simulate evolution under an Mk or
extended-Mk model on a tree (Felsenstein 2004). To do this, we simulate char-
acter evolution on each branch of the tree, starting at the root and progressing
towards the tips. At speciation, we assume that both daughter species inherit
the character state of their parental species immediately following speciation,
and then evolve independently after that. At the end of the simulation, we
will obtain a set of character states, one for each tip in the tree. The distribu-
tion of character states will depend on the shape of the phylogenetic tree (both
its topology and branch lengths) along with the parameters of our model of
character evolution.

We first draw a beginning character state at the root of the tree. There are
several common ways to do this. For example, we can either draw from the
stationary distribution or from one where each character state is equally likely.
In the case of the standard Mk model, these are the same. For example, if we
are simulating evolution under Mk with k = 2, then state 0 and 1 each have
a probability of 1/2 at the root. We can draw the root state from a binomial
distribution with pstate0 = 0.5.

Once we have a character state for the root, we then simulate evolution along
each branch in the tree. We start with the (usually two) branches descending
from the root. We then proceed up the tree, branch by branch, until we get to
the tips.
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We can understand this algorithm perfectly well by thinking about what hap-
pens on each branch of the tree, and then extending that algorithm to all of
the branches (as described above). For each branch, we first calculate P(t),
the transition probability matrix, given the length of the branch and our model
of evolution as summarized by Q and the branch length t. We then focus on
the row of P(t) that corresponds to the character state at the beginning of the
branch. For example, let’s consider a basic two-state Mk model with q = 0.5.
We will call the states 0 and 1. We can calculate P(t) for a branch with length
t = 3 as:

(eq. 7.16)

P(t) = eQt = exp(
[
−0.5 0.5
0.5 −0.5

]
· 3) =

[
0.525 0.475
0.475 0.525

]

If we had started with character state 0 at the beginning of this branch, we
would focus on the first row of this matrix. We want to end up at state 0 with
probability 0.525 and change to state 1 with probability 0.475. We again draw
a uniform random deviate u, and choose state 0 if 0 ≤ u < 0.525 and state 1 if
0.525 ≤ u < 1. If we started with a different character state, we would use a
different row in the matrix. If this is an internal branch in the tree, then both
daughter species inherit the character state that we chose immediately following
speciation – but might diverge soon after! By repeating this along every branch
in the tree, we obtain a set of character states at the tips of the tree. This is
then the output of our simulation.

Two additional details here are worth noting. First, the procedure for simu-
lating characters under the extended-Mk model are identical to those above,
except that the calculation of matrix exponentials is more complicated than in
the standard Mk model. Second, if you are simulating a character with more
than two states, then the procedure for drawing a random number is slightly
different3.

We can apply this approach to simulate the evolution of limblessness in squa-
mates. Below, I present the results of three such simulations. These simulations
are a little different than what I describe above because they consider all changes
in the tree, rather than just character states at nodes and tips; but the model
(and the principal) is the same. You can see that the model leaves an imprint
on the pattern of changes in the tree, and you can imagine that one might be
able to reconstruct the model using a phylogenetic comparative approach. Of
course, typically we know only the tip states, and have to reconstruct changes
along branches in the tree. We will discuss parameter estimation for the Mk
and extended-Mk models in the next chapter.

114



Figure 7.4. Simulated character evolution on a phylogenetic tree of squamates
(from Brandley et al. 2008) under an equal-rates Mk model with slow, fast, and
asymmetric transition rates (from right to left). In all three cases, I assumed
that the ancestor of squamates had limbs. Image by the author, can be reused
under a CC-BY-4.0 license.

Section 7.6: Chapter summary

In this chapter I have described the Mk model, which can be used to describe
the evolution of discrete characters that have a set number of fixed states. We
can also elaborate on the Mk model to allow more complex models of discrete
character evolution (the extended-Mk model). These models can all be used to
simulate the evolution of discrete characters on trees.

In summary, the Mk and extended Mk model are general models that one can
use for the evolution of discrete characters. In the next chapter, I will show how
to fit these models to data and use them to test evolutionary hypotheses.

Section 7.7: Footnotes

1: Imagine that you calculate a rate of character change by counting the number
of changes of state of a character over some time interval, t. You can calculate
the rate of change as nchanges/t. The instantaneous rate is the value that this
rate approaches as t gets smaller and smaller so that the time interval is nearly
zero.

2: I will not cover the details of matrix exponentiation here – interested readers
should see Yang (2006) for details – but the calculations are not trivial.

115

https://creativecommons.org/licenses/by/4.0/


3: One still obtains the relevant row from P(t) and draws a uniform random
deviate u. Imagine that we have a ten-state character with states 0 - 9. We
start at state 0 at the beginning of the simulation. Again using q = 0.5 and
t = 3, we find that:

(eq. 7.17)
pii(t) = 1

k + k−1
k e−kqt = 1

10 + 9
10 e−2·0.5·3 = 0.145

pij(t) = 1
k − 1

k e−kqt 1
10 − 1

10 e−2·0.5·3 = 0.095

We focus on the first row of P(t), which has elements:

We calculate the cumulative sum of these elements, adding them together so
that each number represents the sum of itself and all preceding elements in the
vector:

Now we compare u to the numbers in this cumulative sum vector. We select
the smallest element that is still strictly larger than u, and assign this character
state for the end of the branch. For example, if u = 0.475, the 5th element,
0.525, is the smallest number that is still greater than u. This corresponds to
character state 4, which we assign to the end of the branch. This last procedure
is a numerical trick. Imagine that we have a line segment with length 1. The
cumulative sum vector breaks the unit line into segments, each of which is
exactly as long as the probability of each event in the set. One then just draws
a random number between 0 and 1 using a uniform distribution. The segment
that contains this random number is our event.
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Chapter 8: Fitting models of discrete character
evolution

Section 8.1: The evolution of limbs and limblessness

In the introduction to Chapter 7, I mentioned that squamates had lost their
limbs repeatedly over their evolutionary history. This is a pattern that has
been known for decades, but analyses have been limited by the lack of a large,
well-supported species-level phylogenetic tree of squamates (but see Brandley
et al. 2008). Only in the past few years have phylogenetic trees been produced
at a scale broad enough to take a comprehensive look at this question [e.g.
Bergmann and Irschick (2012); Pyron et al. (2013); see Figure 8.1]. Such efforts
to reconstruct this section of the tree of life provide exciting potential to revisit
old questions with new data.

Figure 8.1. A view of the squamate tree of life. Data from Bergmann et
al. (2012), visualized using OneZoom [Rosindell and Harmon (2012); see
www.onezoom.org]. This image can be reused under a CC-BY-4.0 license.

Plotting the pattern of limbed and limbless species on the tree leads to interest-
ing questions about the tempo and mode of this trait in squamates. For example,
are there multiple gains as well as losses of limbs? Do gains and losses happen at
the same rate, or (as we might expect) are gains more rare than losses? We can
test hypothesis such as these using the the Mk and extended-Mk models (see
chapter 7). In this chapter we will fit these models to phylogenetic comparative
data.
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Section 8.2: Fitting Mk models to comparative data

The equations in Chapter 7 give us enough information to calculate the likeli-
hood for comparative data on a tree. To understand how this is done, we can
first consider the simplest case, where we know the beginning state of a char-
acter, the branch length, and the end state. We can then apply the method
across an entire tree using a pruning algorithm, which will allow calculation of
the likelihood of the data given the model and phylogenetic tree.

Imagine that a two-state character changes from a state of 0 to a state of 1
sometime over a time interval of t = 3. What is the likelihood of these data
under the Mk model? As we did in equation 7.17, we can set a rate parameter
q = 0.5 to calculate a probability matrix:

(eq. 8.1)

P(t) = eQt = exp(
[
−0.5 0.5
0.5 −0.5

]
· 3) =

[
0.525 0.475
0.475 0.525

]

For this simple example, we started with state 0, so we look at the first row.
Along this branch, we ended at state 1, so we should look specifically at p12(t):
the probability of starting with state 0 and ending with state 1 over time t.
This value is the probability of obtaining the data given the model (i.e. the
likelihood): L = 0.475.

This likelihood applies to the evolutionary process along this single branch.

When we have comparative data the situation is more complex. If we knew the
ancestral character states and states at every node in the tree, then calculation
of the overall likelihood would be straightforward – we could just apply the ap-
proach above many times, once for each branch of the tree. However, there are
two problems. First, we don’t know the starting state of the character at the
root of the tree, and must treat that as an unknown. Second, we are modeling
a process that is happening independently on many branches in a phylogenetic
tree, and only observe the states at the end of these branches. All of the char-
acter states at internal nodes of the tree are unknown. The likelihood that we
want to calculate has to be summed across all of these unknown character state
possibilities on the internal branches of the tree.

Thankfully, Felsenstein (1973) provides an elegant algorithm for calculating the
likelihoods for discrete characters on a tree. This algorithm, called Felsenstein’s
pruning algorithm, is described with an example in the appendix to this chapter.
Felsenstein’s pruning algorithm was important in the history of phylogenetics
because it allowed scientists to efficiently calculate the likelihoods of comparative
data given a tree and a model. One can then maximize that likelihood by
changing model parameters (and perhaps also the topology and branch lengths
of the tree; see Felsenstein 2004).
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Pruning also gives some insight into how we can calculate probabilities on trees;
many other problems in comparative methods can be approached using different
pruning algorithms.

Felsenstein’s pruning algorithm proceeds backwards in time from the tips to the
root of the tree (see appendix, section 8.8). At the root, we must specify the
probabilities of each character state in the common ancestor of the species in
the clade. As mentioned in Chapter 7, there are at least three possible methods
for doing this. First, one can assume that each state can occur at the root with
equal probability. Second, one can assume that the states are drawn from their
stationary distribution, as given by the model. The stationary distribution is a
stable probability distribution of states that is reached by the model after a long
amount of time. Third, one might have some information about the root state –
perhaps from fossils, or information about character states in a set of outgroup
taxa – that can be used to assign probabilities to the states. In practice, the
first two of these methods are more common. In the case discussed above – an
Mk model with all transition rates equal – the stationary distribution is one
where all states are equally probable, so the first two methods are identical. In
general, though, these three methods can give different results.

Section 8.3: Using maximum likelihood to estimate param-
eters of the Mk model

The algorithm in the appendix below gives the likelihood for any particular
discrete-state Markov model on a tree, but requires us to specify a value of the
rate parameter q. In the example given, this rate parameter q = 1.0 corresponds
to a lnL of -6.5. But is this the best value of q to use for our Mk model? Probably
not. We can use maximum likelihood to find a better estimate of this parameter.

If we apply the pruning algorithm across a range of different values of q, the
likelihood changes. To find the ML estimate of q, we can again use numerical
optimization methods, calculating the likelihood by pruning for many values of
q and finding the maximum.

Applying this method to the lizard data, we obtain a maximum liklihood esti-
mate of q = 0.001850204 corresponding to lnL = −80.487176.

The example above considers maximization of a single parameter, which is a
relatively simple problem. When we extend this to a multi-parameter model –
for example, the extended Mk model will all rates different (ARD) – maximizing
the likelihood becomes much more difficult. R packages solve this problem by
using sophisticated algorithms and applying them multiple times to make sure
that the value found is actually a maximum.
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Section 8.4: Using Bayesian MCMC to estimate parame-
ters of the Mk model

We can also analyze this model using a Bayesian MCMC framework. We can
modify the standard approach to Bayesian MCMC (see chapter 2):

1. Sample a starting parameter value, q, from its prior distributions. For
this example, we can set our prior distribution as uniform between 0 and
1. (Note that one could also treat probabilities of states at the root as a
parameter to be estimated from the data; in this case we will assign equal
probabilities to each state).

2. Given the current parameter value, select new proposed parameter values
using the proposal density Q(q′|q). For example, we might use a uniform
proposal density with width 0.2, so that Q(q′|q) U(q − 0.1, q + 0.1).

3. Calculate three ratios:

• a. The prior odds ratio, Rprior. In this case, since our prior is uniform,
Rprior = 1.

• b. The proposal density ratio, Rproposal. In this case our proposal
density is symmetrical, so Rproposal = 1.

• c. The likelihood ratio, Rlikelihood. We can calculate the likelihoods
using Felsenstein’s pruning algorithm (Box 8.1); then calculate this
value based on equation 2.26.

4. Find Raccept as the product of the prior odds, proposal density ratio, and
the likelihood ratio. In this case, both the prior odds and proposal density
ratios are 1, so Raccept = Rlikelihood

5. Draw a random number u from a uniform distribution between 0 and 1.
If u < Raccept, accept the proposed value of both parameters; otherwise
reject, and retain the current value of the two parameters.

6. Repeat steps 2-5 a large number of times.

We can run this analysis on our squamate data, obtaining a posterior with a
mean estimate of q = 0.001980785 and a 95% credible interval of 0.001174813 −
0.003012715.

Section 8.5: Exploring Mk: the “total garbage” test

One problem that arises sometimes in maximum likelihood optimization hap-
pens when instead of a peak, the likelihood surface has a long flat “ridge” of
equally likely parameter values. In the case of the Mk model, it is common to
find that all values of q greater than a certain value have the same likelihood.
This is because above a certain rate, evolution has been so rapid that all traces
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of the history of evolution of that character have been obliterated. After this
point, character states of each lineage are random, and have no relationship to
the shape of the phylogenetic tree. Our optimization techniques will not work
in this case because there is no value of q that has a higher likelihood than other
values. Once we get onto the ridge, all values of q have the same likelihood.

For Mk models, there is a simple test that allows us to recognize when the
likelihood surface has a long ridge, and q values cannot be estimated. I like
to call this test the “total garbage” test because it can tell you if your data
are “garbage” with respect to historical inference – that is, your data have no
information about historical patterns of trait change. One can predict states
just as well by choosing each species at random.

To carry out the total garbage test, imagine that you are just drawing trait values
at random. That is, each species has some probability p of having character state
0, and some probability (1 − p) of having state 1 (one can also generalize this
test to multi-state models). This likelihood is easy to write down. For a tree of
size n, the probability of drawing n0 species with state 0 is:

(eq. 8.2)
Lgarbage = pn0(1 − p)n−n0

This equation gives the likelihood of the “total garbage” model for any value of
p. Equation 8.1 is related to a binomial distribution (lacking only the factorial
term). We also know from probability theory that the ML estimate of p is n0/n,
with likelihood given by the above formula.

Now consider the likelihood surface of the Mk model. When Mk likelihood
surfaces have long ridges, they are nearly always for high values of q – and
when the transition rate of character changes is high, this model converges to
our “drawing from a hat” (or “garbage”) model. The likelihood ridge lies at the
value that is exactly taken from equation 8.10 above.

Thus, one can compare the likelihood of our Mk model to the total garbage
model. If the maximum likelihood value of q has the same likelihood as our
garbage model, then we know that we are on a ridge of the likelihood surface
and q cannot be estimated. We also have no ability to make any statements
about the past evolution of our character – in particular, we cannot estimate
ancestral character state with any precision. By contrast, if the likelihood of
the Mk model is greater than the total garbage model, then our data contains
some historical information. We can also make this comparison using AIC,
considering the total garbage model as having a single parameter p.

For the squamates, we have n = 258 and n0 = 207. We calculate p =
n0/n = 207/258 = 0.8023256. So the likelihood of our garbage model is
Lgarbage = pn0(1 − p)n−n0 = 0.8023256207(1 − 0.8023256)51 = 1.968142e − 56.
This calculation is both easier and more useful, though, on a natural-log scale:
lnLgarbage = n0 · ln(p) + (n − n0) · ln(1 − p) = 207 · ln(0.8023256) + 51 · ln(1 −
0.8023256) = −128.2677. Compare this to the log-likelihood of our Mk model,
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lnL = −80.487176, and you will see that the garbage model is a terrible fit to
these data. There is, in fact, some historical information about species’ traits
in our data.

Section 8.6: Testing for differences in the forwards and
backwards rate of character change

I have been referring to an example of lizard limb evolution throughout this
chapter, but we have not yet tested the hypothesis that I stated in the intro-
duction: that transition rates for losing limbs are higher than rates of gaining
limbs.

To do this, we can compare our one-rate Mk model with a two-rate model with
differences in the rate of forwards and backwards transitions. The character
states are 1 (no limbs) and 2 (limbs), and the forward transition represents
gaining limbs. This is a special case of the “all-rates different” model discussed
in chapter two. Q matrices for these two models will be, for model 1 (equal
rates):

(eq. 8.3)

QER =
[
−q q
q −q

]
πER =

[
1/2 1/2

]
And for model 2, asymmetric:

(eq. 8.4)

QASY =
[
−q1 q1
q2 −q2

]
πASY =

[
1/2 1/2

]
Notice that the ER model has one parameter, while the ASY model has two.
Also we have specified equal probabilities of each character at the root of the
tree, which may not be justified. But this comparison is still useful as a simple
example.

One can compare the two nested models using standard methods discussed in
previous chapters – that is, a likelihood-ratio test, AIC, BIC, or other similar
methods.

We can apply all of the above methods to analyze the evolution of limblessness
in squamates. We can use the tree and character state data from Brandley et
al. (2008), which is plotted with ancestral state reconstructions under an ER
model in Figure 8.2.
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Figure 8.2. Reconstructed patterns of the evolution of limbs and limblessness
across squamates. Tips show states of extant taxa (here, I classified species
with neither fore- nor hindlimbs as limbless, which is conservative given the
variation across this clade (see chapter 7). Pie charts on internal nodes show
proportional marginal likelihoods for ancestral state reconstruction under an
ER model. Data from Brandley et al. (2008). Image by the author, can be
reused under a CC-BY-4.0 license.
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If we fit an Mk model to these data assuming equal state frequencies at the root
of the tree, we obtain a lnL of -80.5 and an estimate of the QER matrix as:

(eq. 8.5)

QER =
[
−0.0019 0.0019
0.0019 −0.0019

]
The ASY model with different forward and backward rates gives a lnL of -79.4
and:

(eq. 8.6)

QASY =
[
−0.0016 0.0016
0.0038 −0.0038

]
Note that the ASY model has a higher backwards than forwards rate; as ex-
pected, we estimate a rate of losing limbs that is higher than the rate of gain-
ing them (although the difference is surprisingly low). Is this statistically sup-
ported? We can compare the AIC scores of the two models. For the ER model,
AICc = 163.0, while for the ASY model AICc = 162.8. The AICc score is
higher for the unequal rates model, but only by about 0.2 – which is not defini-
tive either way. So based on this analysis, we cannot rule out the possibility
that forward and backward rates are equal.

A Bayesian analysis of the ASY model gives similar conclusions (Figure 8.3). We
can see that the posterior distribution for the backwards rate (q21) is higher than
the forwards rate (q12), but that the two distributions are broadly overlapping.

You might wonder about how we can reconcile these results, which suggest that
squamates gain limbs at least as frequently as they lose them, with our biological
intuition that limbs should be much more difficult to gain than they are to lose.
But keep in mind that our comparative analysis is not using any information
other than the states of extant species to reconstruct these rates. In particular,
identifying irreversible evolution using comparative methods is a problem that
is known to be quite difficult, and might require outside information in order to
resolve conclusively. For example, if we had some information about the relative
number of mutational steps required to gain and lose limbs, we could use an
informative prior – which would, I suspect, suggest that limbs are more difficult
to gain than they are to lose. Such a prior could dramatically alter the results
presented in Figure 8.3. We will return to the problem of irreversible evolution
later in the book (Chapter 13).

Section 8.7: Chapter summary

In this chapter I describe how Felsenstein’s pruning algorithm can be used to
calculate the likelihoods of Mk and extended-Mk models on phylogenetic trees.
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Figure 8.3. Bayesian posterior distibutions for the extended-Mk model applied
to the evolution of limblessness in squamates. Image by the author, can be
reused under a CC-BY-4.0 license.
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I have also described both ML and Bayesian frameworks that can be used to test
hypotheses about character evolution. This chapter also includes a description
of the “total garbage” test, which will tell you if your data has information
about evolutionary rates of a given character.

Analyzing our example of lizard limbs shows the power of this approach; we can
estimate transition rates for this character over macroevolutionary time, and
we can say with some certainty that transitions between limbed and limbless
have been asymmetric. In the next chapter, we will build on the Mk model
and further develop our comparative toolkit for understanding the evolution of
discrete characters.

Section 8.8: Appendix: Felsenstein’s pruning algorithm

Felsenstein’s pruning algorithm (1973) is an example of dynamic programming,
a type of algorithm that has many applications in comparative biology. In dy-
namic programming, we break down a complex problem into a series of simpler
steps that have a nested structure. This allows us to reuse computations in an
efficient way and speeds up the time required to make calculations.

The best way to illustrate Felsenstein’s algorithm is through an example, which
is presented in the panels below. We are trying to calculate the likelihood for a
three-state character on a phylogenetic tree that includes six species.

1. The first step in the algorithm is to fill in the probabilities for the tips. In
this case, we know the states at the tips of the tree. Mathematically, we
state that we know precisely the character states at the tips; the proba-
bility that that species has the state that we observe is 1, and all other
states have probability zero:

2. Next, we identify a node where all of its immediate descendants are tips.
There will always be at least one such node; often, there will be more than
one, in which case we will arbitrarily choose one. For this example, we
will choose the node that is the most recent common ancestor of species
A and B, labeled as node 1 in Figure 8.2B.

3. We then use equation 7.6 to calculate the conditional likelihood for each
character state for the subtree that includes the node we chose in step 2
and its tip descendants. For each character state, the conditional likeli-
hood is the probability, given the data and the model, of obtaining the
tip character states if you start with that character state at the root. In
other words, we keep track of the likelihood for the tipward parts of the
tree, including our data, if the node we are considering had each of the
possible character states. This calculation is:

(eq. 8.7)

LP (i) = (
∑
x∈k

Pr(x|i, tL)LL(x)) · (
∑
x∈k

Pr(x|i, tR)LR(x))
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Figure 8.4A. Each tip and internal node in the tree has three boxes, which will
contain the probabilities for the three character states at that point in the tree.
The first box represents a state of 0, the second state 1, and the third state 2.
Image by the author, can be reused under a CC-BY-4.0 license.
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Figure 8.4B. We put a one in the box that corresponds to the actual character
state and zeros in all others. Image by the author, can be reused under a
CC-BY-4.0 license.
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Where i and x are both indices for the k character states, with sums taken across
all possible states at the branch tips (x), and terms calculated for each possible
state at the node (i). The two pieces of the equation are the left and right
descendant of the node of interest. Branches can be assigned as left or right
arbitrarily without affecting the final outcome, and the approach also works for
polytomies (but the equation is slightly different). Furthermore, each of these
two pieces itself has two parts: the probability of starting and ending with
each state along the two branches being considered, and the current conditional
likelihoods that enter the equation at the tips of the subtree (LL(x) and LR(x)).
Branch lengths are denoted as tL and tR for the left and right, respectively.

One can think of the likelihood “flowing” down the branches of the tree, and
conditional likelihoods for the left and right branches get combined via multipli-
cation at each node, generating the conditional likelihood for the parent node
for each character state (LP (i)).

Consider the subtree leading to species A and B in the example given. The two
tip character states are 0 (for species A) and 1 (for species B). We can calculate
the conditional likelihood for character state 0 at node 1 as:

(eq. 8.8)

LP (0) = (
∑
x∈k

Pr(x|0, tL = 1.0)LL(x)) · (
∑
x∈k

Pr(x|0, tR = 1.0)LR(x))

Next, we can calculate the probability terms from the probability matrix P. In
this case tL = tR = 1.0, so for both the left and right branch:

(eq. 8.9)

Qt =

−2 1 1
1 −2 1
1 1 −2

 · 1.0 =

−2 1 1
1 −2 1
1 1 −2


So that: (eq. 8.10)

P = eQt =

0.37 0.32 0.32
0.32 0.37 0.32
0.32 0.32 0.37


Now notice that, since the left character state is known to be zero, LL(0) = 1
and LL(1) = LL(2) = 0. Similarly, the right state is one, so LR(1) = 1 and
LR(0) = LR(2) = 0.

We can now fill in the two parts of equation 8.2:

(eq. 8.11)∑
x∈k

Pr(x|0, tL = 1.0)LL(x) = 0.37 · 1 + 0.32 · 0 + 0.32 · 0 = 0.37
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and: ∑
x∈k

Pr(x|0, tR = 1.0)LR(x) = 0.37 · 0 + 0.32 · 1 + 0.32 · 0 = 0.32

So: (eq. 8.12)
LP (0) = 0.37 · 0.32 = 0.12.

This means that under the model, if the state at node 1 were 0, we would have
a likelihood of 0.12 for this small section of the tree. We can use a similar
approach to find that:

(eq. 8.13)
LP (1) = 0.32 · 0.37 = 0.12.

Now we have the likelihood for all three possible ancestral states. These numbers
can be entered into the appropriate boxes:

Figure 8.4C. Conditional likelihoods entered for node 1. Image by the author,
can be reused under a CC-BY-4.0 license.

4. We then repeat the above calculation for every node in the tree. For nodes
3-5, not all of the LL(x) and LR(x) terms are zero; their values can be
read out of the boxes on the tree. The result of all of these calculations:

5. We can now calculate the likelihood across the whole tree using the con-
ditional likelihoods for the three states at the root of the tree.
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Figure 8.4D. Conditional likelihoods entered for all nodes. Image by the author,
can be reused under a CC-BY-4.0 license.

(eq. 8.14)
L =

∑
x∈k

πxLroot(x)

Where πx is the prior probability of that character state at the root of the tree.
For this example, we will take these prior probabilities to be uniform, equal for
each state (πx = 1/k = 1/3). The likelihood for our example, then, is:

(eq. 8.15)

L = 1/3 · 0.00150 + 1/3 · 0.00151 + 1/3 · 0.00150 = 0.00150

Note that if you try this example in another software package, like GEIGER or
PAUP*, the software will calculate a ln-likelihood of -6.5, which is exactly the
natural log of the value calculated here.
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Chapter 9: Beyond the Mk Model

Section 9.1: The Evolution of Frog Life History Strategies

Frog reproduction is one of the most bizarrely interesting topics in all of biology.
Across the nearly 6,000 species of living frogs, one can observe a bewildering
variety of reproductive strategies and modes (Zamudio et al. 2016). As children,
we learn of the “classic” frog life history strategy: the female lays jellied eggs
in water, which hatch into tadpoles, then later metamorphose into their adult
form [e.g. Rey (2007); Figure 9.1A]. But this is really just the tip of the frog
reproduction iceberg. Many species have direct development, where the tadpole
stage is skipped and tiny froglets hatch from eggs. There are foam-nesting
frogs, which hang their eggs from leaves in foamy sacs over streams; when the
eggs hatch, they drop into the water [e.g. Fukuyama (1991); Figure 9.1B].
Male midwife toads carry fertilized eggs on their backs until they are ready
to hatch, at which point they wade into water and their tadpoles wriggle free
[Marquez and Verrell (1991); Figure 9.1C]. Perhaps most bizarre of all are the
gastric-brooding frogs, now thought to be extinct. In this species, female frogs
swallow their fertilized eggs, which hatch and undergo early development in their
mother’s stomach (Tyler and Carter 1981). The young were then regurgitated
to start their independent lives.

The great diversity of frog reproductive modes brings up several key questions
that can potentially be addressed via comparative methods. How rapidly do
these different types of reproductive modes evolve? Do they evolve more than
once on the tree? Were “ancient” frogs more flexible in their reproductive
mode than more recent species? Do some clades of frog show more flexibility in
reproductive mode than others?

Many of the key questions stated above do not fall neatly into the Mk or
extended-Mk framework presented in the previous characters. In this chapter,
I will review approaches that elaborate on this framework and allow scientists
to address a broader range of questions about the evolution of discrete traits.

To explore these questions, I will refer to a dataset of frog reproductive modes
from Gomez-Mestre et al. (2012), specifically data classifying species as those
that lay eggs in water, lay eggs on land without direct development (terrestrial),
and species with direct development (Figure 9.2).

Section 9.2: Beyond the Mk model

In Chapter 8, we considered the evolution of discrete characters on phylogenetic
trees. These models fall under the general category of continuous-time Markov
models, which consider a process that can occupy two or more states. Tran-
sitions occur between those states in continuous time. The Markov property
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Figure 9.1. Examples of frog reproductive modes. (A) European common frogs
lay jellied eggs in water, which hatch as tadpoles and metamorphose; (B) Mal-
abar gliding frogs make nests that, supported by foam created during amplexus,
hang from leaves and branches; (C) Male midwife toads carry fertilized eggs on
their back. Photo credits: A: Thomas Brown / Wikimedia Commons / CC-BY-
2.0, B: Vikram Gupchup / Wikimedia Commons / CC-BY-SA-4.0 C: Christian
Fischer / Wikimedia Commons / CC-BY-SA-3.0
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Figure 9.2. Ancestral state reconstruction of frog reproductive modes. Data
from Gomez-Mestre et al. (2012). Image by the author, can be reused under a
CC-BY-4.0 license.
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means that, at some time t, what happens next in the model depends only on
the current state of the process and not on anything that came before.

In evolutionary biology, the most detailed work on continuous time Markov
models has focused on DNA or protein sequence data. As mentioned earlier,
an extremely large set of models are available for modeling and analyzing these
molecular sequences. One can also elaborate on these models by adding rate
heterogeneity across sites (e.g. the gamma parameter, as in GTR + Γ), or other
complications related to mechanisms of sequence evolution (for a review, see Liò
and Goldman 1998).

However, there are two important differences between models of sequence evolu-
tion and models of character change on trees that make our task distinct from
the task of modeling DNA or amino acid sequences. First, when analyzing
molecular sequences, one typically has data for many thousands (or millions) of
characters. Data sets for other characters – like the phenotypic characters of
species – are typically much smaller (and harder to collect). Second, sequence
analysis very often assumes that each character evolves independently from all
other characters, but that all characters (or at least certain large subsets of
those characters) evolve under a shared model (Liò and Goldman 1998; Yang
2006). This means that, for example, the frequency of transitions between A
and C at one location in a gene sequence contribute information about the same
transition in a different location in the sequence.

Unfortunately, when analyzing morphological character evolution, we are often
interested in single characters, and the use of shared models across characters
seems impossible to justify. There is usually no equivalence between different
character states for different characters: an A is an A for sequences, but a “1”
in a character matrix usually corresponds to the presence of two completely
different characters. The consequence of this difference is reflected in the statis-
tical property of multivariate data. For gene sequence problems, adding more
data in the form of additional characters (sites) makes model-fitting easier, as
each site adds information about the overall (shared) model across sites. With
character data, additional characters do not make the problem any easier, be-
cause each character comes with its own model parameters. In fact, we will
see that when considering character correlations using a generalized Mk model,
adding characters actually makes the problem more and more difficult. Perhaps
these issues partially explain the slow pace of model development for fitting dis-
crete characters to trees. There are a few potential solutions, such as threshold
models [Felsenstein (2005); Felsenstein (2012); discussed below]. More work is
desperately needed in this area.

In this chapter, we will first discuss extensions of Mk models that allow us to add
complexity to this simple model. We also discuss threshold models, a relatively
new approach in comparative methods that is distinct from Mk models and has
some potential for future development.

135



Section 9.3: Pagel’s λ, δ, and κ (lambda, delta, and kappa)

The three Pagel models discussed in chapter 6 (Pagel 1999a,b) can also be ap-
plied to discrete characters. We do not create a phylogenetic variance-covariance
matrix for species under an Mk model, so these three models can, in this case,
only be interpreted in terms of transformations of the tree’s branch lengths.
However, the meaning of each parameter is the same as in the continuous case:
λ scales the tree from its original form to a “star” phylogeny, and thus quantifies
whether the data fits a tree-based model or one where all species are indepen-
dent; δ captures changes in the rate of trait evolution through time; and κ scales
branch lengths between their original values and one, and mimics a speciational
model of evolution (but only if all species are sampled and there has been no
extinction).

Just as with discrete characters, the three Pagel models can be evaluated in
either an ML / AICc framework or using Bayesian analysis. One might expect
these models to behave differently when applied to discrete rather than contin-
uous characters, though. The main reason for this is that discrete characters,
when they evolve rapidly, lose historical information surprisingly quickly. That
means that models with high rates of character transitions will be quite simi-
lar to both models with low “phylogenetic signal” (i.e. λ = 0) and with rates
that accelerate through time (i.e. δ > 0). This indicates potential problems
with model identifiability, and warns us that we might not have good power to
differentiate one model from another.

We can apply these three models to data on frog reproductive modes. But first,
we should try the Mk and extended-Mk models. Doing so, we find the following
results:

Model lnL AICc ∆AICc AIC Weight
ER -316.0 633.9 38.0 0.00
SYM -296.6 599.2 3.2 0.17
ARD -291.9 596.0 0.0 0.83

We can interpret this as strong evidence against the ER model, with ARD as
the best, and weak support in favor of ARD over SYM. We can then try the
three Pagel parameters. Since the support for SYM and ARD were similar, we
will add the extra parameters to each of them. Doing so, we obtain:

Model Extra parameter lnL AICc ∆AICc AIC weight
ER -316.0 633.9 38.0 0.00
SYM -296.6 599.2 5.2 0.02
ARD -291.9 596.0 0 0.37
SYM λ -296.6 601.2 5.2 0.02
SYM κ -296.6 601.2 5.2 0.02
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Model Extra parameter lnL AICc ∆AICc AIC weight
SYM δ -295.6 599.2 3.2 0.07
ARD λ -292.1 598.3 2.3 0.11
ARD κ -291.3 596.9 0.9 0.24
ARD δ -292.4 599.0 3.0 0.08

Notice that our results are somewhat ambiguous, with AIC weights spread fairly
evenly across the three Pagel models. Interestingly, the overall lowest AIC score
(and the most AIC weight, though only just more than 1/3 of the total) is
on the ARD model with no additional Pagel parameters. I interpret this to
mean that, for these data, the standard ARD model with no alterations is
probably a reasonable fit to the data compared to the Pagel-style alternatives
considered above, especially given the additional complexity of interpreting tree
transformations in terms of evolutionary processes.

Section 9.4: Mk models where parameters vary across
clades and/or through time

Another generalization of the Mk model we might imagine is a Mk model where
rate parameters vary, either across clades or through time. There is some recent
work along these lines, with two approaches that consider the possibility that
rates of evolution for an Mk model vary on different branches of a phylogenetic
tree (Marazzi et al. 2012; Beaulieu et al. 2013).

We can understand how these methods work in general terms by considering
a simple case where the rate of character evolution is faster in one clade than
in the rest of the tree. This is the discrete-character version of the approaches
for continuous characters that I discussed in chapter 6 (O’Meara et al. 2006b;
Thomas et al. 2006). The simplest way to implement a multi-rate discrete model
is to directly incorporate variation across models into the pruning algorithm that
is used to calculate the Mk model on a phylogenetic tree (see FitzJohn 2012 for
implementation).

One can, for example, consider a model where the overall rate of evolution varies
between clades in a phylogenetic tree. To do this, we can specify the background
rate of evolution using some transition matrix Q, and then assume that within
our focal clade evolution can be modeled with some scalar value r, such that the
new rate matrix is rQ. Given Q and r, one can calculate the likelihood for this
model using the pruning algorithm, modified in such a way that the appropriate
transition matrix is used along each branch in the tree; one can then maximize
the likelihood of the model for all parameters (those describing Q, as well as r,
which describes the relative rate of evolution in the focal clade compared to the
background).
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In even more general terms, we will consider the situation where we can describe
the model of evolution using a set of Q matrices: Q1, Q2, . . ., Qn, each of which
can be assigned to a particular branch in a phylogenetic tree (or be assigned to
branches depending on some other character that influences the rate of the focal
character; Marazzi et al. 2012). The only limit here is that each Q matrix adds
a new set of model parameters that must be estimated from the data, and it is
easy to imagine this model becoming overparametized. If we imagine a model
where every branch has its own Q-matrix, then we are actually describing the
“no common mechanism” model (Tuffley and Steel 1997; Steel and Penny 2000),
which is statistically identical to parsimony. It should also be possible to create
a method that explores all models connecting simple Mk and the no common
mechanism model using the machinery of reversible-jump MCMC, although I
do not think such an approach has ever been implemented (but see Huelsenbeck
et al. 2004).

One can also describe a situation where rate parameters in the Q matrix change
through time. This might follow a constant pattern of increase or decrease
through time, or might be related to some external driver like temperature.
One can mimic models where rates change through time by changing the branch
lengths of phylogenetic trees. If deep branches are lengthened relative to shallow
branches, as is done by Pagel’s δ, then we can fit a model where rates of evolution
slow through time; conversely, lengthening shallow branches relative to deep
ones creates a model where the overall rate of evolution accelerates through
time (see FitzJohn 2012).

More work could certainly be done in the area of time-varying rates of change.
The most general approach is to write a set of differential equations that describe
the changes in character state along single branches in the tree. Parameters in
those equations can be made to vary, either through time or even in a way
that is correlated with some external variable hypothesized to influence rates
of change, like temperature or rainfall. Given such a model, the reverse-time
approach of Maddison et al. (2007) can then be used to fit general time-varying
(or even clade-varying) Mk models to data (see Uyeda et al. 2016).

Section 9.5: Threshold models

Recently, Joe Felsenstein (2005, 2012) introduced a model from quantitative
genetics, the threshold model, to comparative methods. Threshold models work
by modeling a discrete character as underlain by some other, unobserved, con-
tinuous trait (called the liability). If the liability crosses a certain threshold
value, then the discrete state changes. More specifically, we can consider a
single trait, y, with two states, 0 and 1, which is in turn determined by some
underlying continuous variable, x, called the liability. If x is greater than the
threshold, t, then y is 1; otherwise, y is 0. Felsenstein (2005) assumes that x
evolves under a Brownian motion model, although other models like OU are, in
principle, possible.
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We can find the likelihood to this model by considering the observations of
character states at the tips of the tree. We observe the state of each species, yi.
We do not know the liability values for these species. However, we treat these
liabilities as unobserved and consider their distributions. Under a Brownian
motion model, we know that the liabilities will follow a multivariate normal
distribution (see chapter 3). We can calculate the probability of observing the
data (yi) by finding the integral of the distributions of liabilities on the side of
the threshold that matches the data. So if the distribution of the liability for
species i is pi(x), then:

(eq 9.1)

p(yi = 0) =
t∫

−∞

pi(x)dx

and

p(yi = 1) =
∞∫

t

pi(x)dx

(see Figure 9.3 for an illustration of this calculation, which is easier than it
looks since there are standard formulas for finding the area under a normal
distribution).

One can fit this model using standard ML or Bayesian methods. Current imple-
mentations include an expectation-maximization (EM) algorithm (Felsenstein
2005, 2012) and a Bayesian MCMC (Revell 2014).

The threshold model differs in some key ways from standard Mk-type models.
First of all, threshold characters evolve differently than non-threshold characters
because of their underlying liability. In particular, the effective rate of change
of the discrete character depends on the amount of time that a lineage has been
in that character state. Characters that have just changed (say, from 0 to 1)
are likely to change back (from 1 to 0), since the liability is likely to be near the
threshold. By contrast, characters that have been in one state or the other for
a long time tend to be more unlikely to change (since the liability is likely very
far from the threshold). This difference matches biological intuition for some
characters, where millions of years in one state means that change to a different
state might be unlikely. This behavior of the threshold model can potentially
account for variation in transition rates across clades without adding additional
model parameters. Second, the threshold model scales to cover more than one
character more readily than Mk models. Finally, in a threshold framework, it is
straightforward to extend the model to include a mixture of both discrete and
continuous characters – basically, one assumes that the continuous characters
are like “observed liabilities,” and can be modeled together with the discrete
characters.
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Figure 9.3. Illustration of the integral in equation 9.1. For a trait with observed
state zero we calculate the area under the curve from negative infinity to the
threshold t. Image by the author, can be reused under a CC-BY-4.0 license.
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Section 9.6: Modeling more than one discrete character at
a time

It is extremely common to have datasets with more than one discrete character
– in fact, one could argue that multivariate discrete datasets are the cornerstone
of systematics. Nowadays, the most common multivariate discrete datasets
are composed of genetic/genomic data. However, the foundations of modern
phylogenetic comparative biology were laid out by Hennig (1966) and the other
early cladists, who worked out methods for using discrete character data to
obtain phylogenetic trees that show the evolutionary history of clades.

Almost all phylogenetic reconstruction methods that use discrete characters as
data make a key assumption: that each of these characters evolves indepen-
dently from one another. Mathematically, one calculates the likelihood for each
single character, then multiplies this likelihood (or, equivalently, adds the log-
likelihood) across all characters to obtain the likelihood of the data.

The assumption of character independence is clearly not true in general. In
the case of morphological characters, structures often interact with one another
to determine the fitness of an individual, and it seems very likely that those
structures are not independent. In fact, some times we are specifically interested
in whether or not particular sets of characters evolve independently or not.
Methods that assume character independence a priori are not useful for that
sort of framework.

Felsenstein (1985) made a huge impact on the field of evolutionary biology with
a statistical argument about species: species can not be considered independent
data points because they share an evolutionary history. Species that are most
closely related to one another will covary, simply due to that shared history.
Nowadays, one cannot publish a paper in comparative biology without account-
ing directly for the non-independence of species that evolve on a tree. However,
it is still very common to ignore the non-independence of characters, even when
they occur together in the same organism! Surely the shared developmental his-
tory of two characters within one body commonly leads to correlations across
these characters.

Section 9.7: Testing for non-independent evolution of dif-
ferent characters

Hypotheses in evolutionary biology often relate to whether two (or more) traits
affect the evolution of one another (see Chapter 5). One can have a standard
correlation between two discrete traits if knowing the state of one trait allows you
to predict the state of the other. However, in evolution, these correlations will
arise due to the shared patterns of relatedness across species. We are typically
more interested in evolutionary correlations (see Chapter 5). With discrete
traits, we can define evolutionary correlations in a specific way: two discrete
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traits share an evolutionary correlation if the state of one character affects the
relative transition rates of a second.

Imagine that we are considering the evolution of two traits, trait 1 and trait 2,
on a phylogenetic tree. Both traits have two possible character states, one and
zero. We can show these two traits visually as Figure 9.4.

Figure 9.4. Two discrete character traits, each with two states (labeled 0 and
1). Image by the author, can be reused under a CC-BY-4.0 license.

In the figure, each trait has two possible transition rates, from 0 to 1 and from
1 to 0. For now, let’s assume that backwards and forward rates are equal. Any
species can have one of four possible combinations of the two traits (00, 01, 10,
or 11). We can draw the transitions among these four combinations as Figure
9.5.

In Figure 9.6, I have marked the distinct rates with different rectangles – black
represents changes in trait 1, while checkered is changes in trait 2. Notice that,
in this figure, we are assuming that the two traits are independent. That is, in
this model the transition rates of trait one do not depend on the state of trait
2, and vice-versa. What would happen to our model if we allow the traits to
evolve in a dependent manner?

Notice that in Figure 9.6, we have four different transition rates. Consider first
the solid rectangles. The grey rectangle represents the transition rate for trait
1 when trait 2 has state 0, while the black rectangle represents the transition
rate for trait 1 when trait 2 has state 1. If these two rates are different, then
the traits are dependent on each other – that is, the rate of evolution of trait 1
depends on the character state of trait 2.

These two models have different numbers of parameters, but are relatively easy
to fit using the maximum-likelihood approach outlined in this chapter. The
key is to write down the transition matrix (Q) for each model. For example, a
transition matrix for model in figure 9.4 is:
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Figure 9.5. Transitions among states for two traits with two character states
each where characters evolve independently of one another. Image by the author,
can be reused under a CC-BY-4.0 license.
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Figure 9.6. Transitions among states for two traits with two character states
each where characters evolve at rates that depend on the character state of the
other trait. Image by the author, can be reused under a CC-BY-4.0 license.
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(eq. 9.2)

Q =


−q1 − q2 q1 q2 0

q1 −q1 − q2 0 q2
q2 0 −q1 − q2 q1
0 q2 q1 −q1 − q2


In the matrix above, each row and column corresponds to a particular combi-
nation of states for character 1 and 2: (0,0), (0,1), (1,0), and (1,1). Note that
some possible transitions in this model have rate 0, meaning they do not oc-
cur. These are transitions that would require both characters to change exactly
simultaneously (e.g. (0,0) to (1,1) – a possibility that is excluded from this
model.

Similarly, we can write a transition matrix for the model in figure 9.5:

(eq. 9.3)

Q =


−q1 − q2 q1 q2 0

q1 −q1 − q3 0 q3
q2 0 −q2 − q4 q4
0 q3 q4 −q3 − q4


Notice that the simple, 2-parameter independent evolution model is a special
case of the more complex, 4-parameter dependent model. Because of this, we
can compare the two with a likelihood ratio test. Alternatively, AIC or Bayes
factors can be used. If we find support for the 4-parameter model, we can
conclude that the evolution of at least one of the two characters depends on the
state of the other.

It is worth noting that there are other models that one can fit for the evolution of
two binary traits that I did not discuss above. For example, one can model the
situation where the two traits each have different forwards and backwards rates,
but are evolving independently. This is a four-parameter model. Additionally,
one can allow both forward and backward rates to differ and to depend on the
character state of the other trait: an eight-parameter model. This is the model
one needs to truly see a correlation between the two characters, one where
certain combinations tend to accumulate in the tree. All of these models – and
others not described here – can be compared using AIC, BIC, or Bayes Factors.
Pagel and Meade (2006) describe a particularly innovative and synthetic method
to test hypotheses about correlated evolution of discrete characters in a Bayesian
framework using reversible-jump MCMC.

One can also test for correlations among discrete characters using threshold
models. Here, one tests whether or not the liabilities for the two characters
evolve in a correlated fashion. More specifically, we can model liabilities for the
two threshold characters using a bivariate Brownian motion model, with some
evolutionary covariance σ2

12 between the two liabilities. We can then use either
ML or Bayesian methods to determine if the evolutionary covariance between
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the two characters is non-zero (following the methods described in chapter 5,
but using likelihoods based on discrete characters as described above).

Section 9.8: Chapter summary

The simple Mk model provides a useful foundation for a number of innovative
methods. These methods capture evolutionary processes that are more com-
plicated than the original model, including models that vary through time or
across clades. Modeling more than one discrete character at a time allows us to
test for the correlated evolution of discrete characters.

Taken as a whole, chapters 7 through 9 provide a basis for the analysis of discrete
characters on trees. One can test a variety of biologically relevant hypotheses
about how these characters have changed along the branches of the tree of life.
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Chapter 10: Introduction to birth-death models

Section 10.1: Plant diversity imbalance

The diversity of flowering plants (the angiosperms) dwarfs the number of species
of their closest evolutionary relatives (Figure 10.1). There are more than 260,000
species of angiosperms (that we know; more are added every day). The clade
originated more than 140 million years ago (Bell et al. 2005), and all of these
species have formed since then. One can contrast the diversity of angiosperms
with the diversity of other groups that originated at around the same time. For
example, gymnosperms, which are as old as angiosperms, include only around
1000 species, and may even represent more than one clade. The diversity of
angiosperms also dwarfs the diversity of familiar vertebrate groups of similar
age (e.g. squamates - snakes and lizards - which diverged from their sister taxon,
the tuatara, some 250 mya or more Hedges et al. 2006, include fewer than 8000
species).

The evolutionary rise of angiosperm diversity puzzled Darwin over his career,
and the issues surrounding angiosperm diversification are often referred to as
“Darwin’s abominable mystery” in the scientific literature (e.g. Davies et al.
2004). The main mystery is the tremendous variation in numbers of species
across plant clades (see Figure 10.1). This variation even applies within an-
giosperms, where some clades are much more diverse than others.

At a global scale, the number of species in a clade can change only via two
processes: speciation and extinction. This means that we must look to specia-
tion and extinction rates – and how they vary through time and across clades
– to explain phenomena like the extraordinary diversity of Angiosperms. It is
to this topic that we turn in the next few chapters. Since Darwin’s time, we
have learned a lot about the evolutionary processes that led to the diversity of
angiosperms that we see today. These data provide an incredible window into
the causes and effects of speciation and extinction over macroevolutionary time
scales.

Comparative methods can be applied to understand patterns of species richness
by estimating speciation and extinction rates, both across clades and through
time. In this chapter, I will introduce birth-death models, by far the most
common model for understanding diversification in a comparative framework. I
will discuss the mathematics of birth-death models and how these models relate
to the shapes of phylogenetic trees. I will describe how to simulate phylogenetic
trees under a birth-death model. Finally, I will discuss tree balance and lineage-
through-time plots, two common ways to measure the shapes of phylogenetic
trees.
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Figure 10.1. Diversity of major groups of embryophytes (land plants); bar areas
are proportional to species diversity of each clade. Angiosperms, including some
250,000 species, comprise more than 90% of species of land plants. Figure
inspired by Crepet and Niklas (2009). Image by the author, can be reused
under a CC-BY-4.0 license.
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Section 10.2: The birth-death model

A birth-death model is a continuous-time Markov process that is often used to
study how the number of individuals in a population change through time. For
macroevolution, these “individuals” are usually species, sometimes called “lin-
eages” in the literature. In a birth-death model, two things can occur: births,
where the number of individuals increases by one; and deaths, where the num-
ber of individuals decreases by one. We assume that no more than one new
individual can form (or die) during any one event. In phylogenetic terms, that
means that birth-death trees cannot have “hard polytomies” - each speciation
event results in exactly two descendant species.

In macroevolution, we apply the birth-death model to species, and typically
consider a model where each species has a constant probability of either giving
birth (speciating) or dying (going extinct). We denote the per-lineage birth rate
as λ and the per-lineage death rate as µ. For now we consider these rates to be
constant, but we will relax that assumption later in the book.

We can understand the behavior of birth-death models if we consider the waiting
time between successive speciation and extinction events in the tree. Imagine
that we are considering a single lineage that exists at time t0. We can think
about the waiting time to the next event, which will either be a speciation event
splitting that lineage into two (Figure 10.2A) or an extinction event marking
the end of that lineage (Figure 10.2B). Under a birth-death model, both of these
events follow a Poisson process, so that the expected waiting time to an event
follows an exponential distribution (Figure 10.2C). The expected waiting time
to the next speciation event is exponential with parameter λ, and the expected
waiting time to the next extinction event exponential with parameter µ. [Of
course, only one of these can be the next event. The expected waiting time
to the next event (of any sort) is exponential with parameter λ + µ, and the
probability that that event is speciation is λ/(µ + λ), extinction µ/(µ + λ)].

When we have more than one lineage “alive” in the tree at any time point,
then the waiting time to the next event changes, although its distribution is
still exponential. In general, if there are N(t) lineages alive at time t, then
the waiting time to the next event follows an exponential distribution with
parameter N(t)(λ + µ), with the probability that that event is speciation or
extinction the same as given above. You can see from this equation that the rate
parameter of the exponential distribution gets larger as the number of lineages
increases. This means that the expected waiting times across all lineages get
shorter and shorter as more lineages accumulate.

Using this approach, we can grow phylogenetic trees of any size (Figure 10.2D).

We can derive some important properties of the birth-death process on trees.
To do so, it is useful to define two additional parameters, the net diversification
rate (r) and the relative extinction rate (ϵ):
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Figure 10.2. Illustration of the basic properties of birth-death models. A. Wait-
ing time to a speciation event; B. Waiting time to an extinction event; C. Expo-
nential distribution of waiting times until the next event; D. A birth-death tree
with waiting times, with x denoting extinct taxa. Image by the author, can be
reused under a CC-BY-4.0 license.
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(eq. 10.1)
r = λ − µ

ϵ = µ

λ

These two parameters simplify some of the equations below, and are also com-
monly encountered in the literature.

To derive some general properties of the birth-death model, we first consider
the process over a small interval of time, ∆t. We assume that this interval is
so short that it contains at most a single event, either speciation or extinction
(the interval might also contain no events at all). The probability of speciation
and extinction over the time interval can be expressed as:

(eq. 10.2)
Prspeciation = N(t)λ∆t

Prextinction = N(t)µ∆t

We now consider the total number of living species at some time t, and write this
as N(t). It is useful to think about the expected value of N(t) under a birth-
death model [we consider the full distribution of N(t) below]. The expected
value of N(t) after a small time interval ∆t is:

(eq. 10.3)
N(t + ∆t) = N(t) + N(t)λ∆t − N(t)µ∆t

We can convert this to a differential equation by subtracting N(t) from both
sides, then dividing by ∆t and taking the limit as ∆t becomes very small:

(eq. 10.4)
dN/dt = N(λ − µ)

We can solve this differential equation if we set a boundary condition that
N(0) = n0; that is, at time 0, we start out with n0 lineages. We then obtain:

(eq. 10.5)
N(t) = n0eλ−µt = n0ert

This deterministic equation gives us the expected value for the number of species
through time under a birth-death model. Notice that the number of species
grows exponentially through time as long as λ > µ, i.e. r > 0, and decays
otherwise (Figure 10.3).

We are also interested in the stochastic behavior of the model – that is, how much
should we expect N(t) to vary from one replicate to the next? We can calculate
the full probability distribution for N(t), which we write as pn(t) = Pr[N(t) =
n] for all n ≥ 0, to completely describe the birth-death model’s behavior. To
derive this probability distribution, we can start with a set of equations, one for
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Figure 10.3. Expected number of species under a birth-death model with r =
λ − µ > 0 (top line), r = 0 (middle line), and r < 0 (bottom line). In each
case the starting number of species was n0 = 1000. Image by the author, can
be reused under a CC-BY-4.0 license.
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each value of n, to keep track of the probabilities of n lineages alive at time t.
We will denote each of these as pn(t) (there are an infinite set of such equations,
from p0 to p∞). We can then write a set of difference equations that describe
the different ways that one can reach any state over some small time interval
∆t. We again assume that ∆t is sufficiently small that at most one event (a
birth or a death) can occur. As an example, consider what can happen to make
n = 0 at the end of a certain time interval. There are two possibilities: either we
were already at n = 0 at the beginning of the time interval and (by definition)
nothing happened, or we were at n = 1 and the last surviving lineage went
extinct. We write this as:

(eq. 10.6)
p0(t + ∆t) = p1(t)µ∆t + p0(t)

Similarly, we can reach n = 1 by either starting with n = 1 and having no
events, or going from n = 2 via extinction.

(eq. 10.7)
p1(t + ∆t) = p1(t)(1 − (λ + µ))∆t + p2(t)2µ∆t

Finally, any for n > 1, we can reach the state of n lineages in three ways: from
a birth (from n − 1 to n), a death (from n + 1 to n), or neither (from n to n).

(eq. 10.8)

pn(t + ∆t) = pn−1(t)(n − 1)λ∆t + pn+1(t)(n + 1)µ∆t + pn(t)(1 − n(λ + µ))∆t

We can convert this set of difference equations to differential equations by sub-
tracting pn(t) from both sides, then dividing by ∆t and taking the limit as ∆t
becomes very small. So, when n = 0, we use 10.6 to obtain:

(eq. 10.9)
dp0(t)/dt = µp1(t)

From 10.7:

(eq. 10.10)
dp1(t)/dt = 2µp2(t) − (λ − µ)p1(t)

and from 10.8, for all n > 1:

(eq. 10.11)

dpn(t)/dt = (n − 1)λpn−1(t) + (n + 1)µpn+1(t) − n(λ + µ)pn(t)

We can then solve this set of differential equations to obtain the probability
distribution of pn(t). Using the same boundary condition, N(0) = n0, we have
p0(t) = 1 for n = n0 and 0 otherwise. Then, we can find the solution to the
differential equations 10.9, 10.10, and 10.11. The derivation of the solution to
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this set of differential equations is beyond the scope of this book (but see Kot
2001 for a nice explanation of the mathematics). A solution was first obtained
by Bailey (1964), but I will use the simpler equivalent form from Foote et al.
(1999). For p0(t) – that is, the probability that the entire lineage has gone
extinct at time t – we have:

(eq. 10.12)
p0(t) = αn

0

And for all n ≥ 1:

(eq. 10.13)

pn(t) =
min(n0,n)∑

j=1

(
n0

j

)(
n − 1
j − 1

)
αn0−jβn−j [(1 − α)(1 − β)]j

Where α and β are defined as:

(eq. 10.14)

α = ϵ(ert − 1)
(ert − ϵ)

β = (ert − 1)
(ert − ϵ)

α is the probability that any particular lineage has gone extinct before time t.

Note that when n0 = 1 – that is, when we start with a single lineage - equations
10.12 and 10.13 simplify to (Raup 1985):

(eq. 10.15)
p0(t) = α

And for all n ≥ 1:

(eq. 10.16)
pn(t) = (1 − α)(1 − β)βi−1

In all cases the expected number of lineages in the tree is exactly as stated
above in equation (10.5), but now we have the full probability distribution of
the number of lineages given n0, t, λ, and µ. A few plots capture the general
shape of this distribution (Figure 10.4).

There are quite a few comparative methods that use clade species richness and
age along with the distributions defined in 10.14 and 10.15 to make inferences
about clade diversification rates (see chapter 11).
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Figure 10.4. Probability distributions of N(t) under A. pure birth, B. birth
death after a short time, and C. birth-death after a long time. Image by the
author, can be reused under a CC-BY-4.0 license.
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Section 10.3: Birth-death models and phylogenetic trees

The above discussion considered the number of lineages under a birth-death
model, but not their phylogenetic relationships. However, just by keeping track
of the parent-offspring relationships among lineages, we can consider birth-death
models that result in phylogenetic trees (e.g. Figure 10.2D).

The main complication in phylogenetic studies of birth-death models is that we
get a “censored” view of the process, in that we only observe lineages that survive
to the present day. In the above example, if the true phylogenetic tree were the
one plotted in 10.5A, we would only have a chance to observe the phylogenetic
tree in figure 10.5B – and even then only if we sampled all of the species and
reconstructed the tree with perfect accuracy! A partially sampled tree with only
extant species can be seen in Figure 10.5C. I will cover the relationship between
birth-death models and the branch lengths of phylogenetic trees in much more
detail in the next chapter.

Figure 10.5. A. A birth-death tree including all extinct and extant species; B.
A birth-death tree including only extant species; and C. A partially sampled
birth-death tree including only some extant species. Image by the author, can
be reused under a CC-BY-4.0 license.
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Section 10.4: Simulating birth-death trees

We can use the statistical properties of birth-death models to simulate phylo-
genetic trees through time. We could begin with a single lineage at time 0.
However, phylogenetic tree often start with the first speciation event in the
clade, so one can also begin the simulation with two lineages at time 0 (this
difference relates to the distinction between crown and stem ages of clades; see
also Chapter 11).

To simulate our tree, we need to draw waiting times between speciation and
extinction events, connect new lineages to the tree, and prune lineages when
they go extinct. We also need a stopping criterion, which can have to do with a
particular number of taxa or a fixed time interval. We will consider the latter,
and leave growing trees to a fixed number of taxa as an exercise for the reader.
Our simulation algorithm is as follows. I assume that we have a certain number
of “living” lineages in our tree (1 or 2 initially), a current time (tc = 0 initially),
and a stopping time tstop.

1. Draw a waiting time ti to the next speciation or extinction event. Waiting
times are drawn from an exponential distribution with rate parameter
Nalive ∗ (λ + µ) where Nalive is the current number of living lineages in
the tree.

2. Check to see if the simulation ends before the next event. That is, if
tc + ti > tstop, end the simulation.

3. Decide whether the next event is a speciation event [with probability λ/(λ+
µ)] or an extinction event [with probability µ/(λ+µ)]. This can be done by
drawing a uniform random number ui from the interval [0, 1] and assigning
speciation to the event if ui < λ/(λ + µ) and extinction otherwise.

4. If (3) is a speciation event, then choose a random living lineage in the tree.
Attach a new branch to the tree at this point, and add one new living
lineage to the simulation. Return to step 1.

5. If (3) is an extinction event, choose a random living lineage in the tree.
That lineage is now dead. As long as there is still at least one living lineage
in the tree, return to (1); otherwise, your whole clade has gone extinct,
and you can stop the simulation.

This procedure returns a phylogenetic tree that includes both living and dead
lineages. One can prune out any extinct taxa to return a birth-death tree of
survivors, which is more in line with what we typically study using extant species.
It is also worth noting that entire clades can – and often do – go extinct under
this protocol before one reaches time tstop. Note also that there is a much more
efficient way to simulate trees (Stadler 2011).

We can think about phylogenetic predictions of birth-death models in two ways:
by considering tree topology, and by considering tree branch lengths. I will
consider each of these two aspects of trees below.
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Section 10.5: Tree topology, tree shape, and tree balance
under a birth-death model

Tree topology summarizes the patterns of evolutionary relatedness among a
group of species independent of the branch lengths of a phylogenetic tree. Two
different trees have the same topology if they define the exact same set of clades.
This is important because sometimes two trees can look very different and yet
still have the same topology (e.g. Figure 10.6 A, B, and C).

Figure 10.6. Several phylogenetic trees showing different ways to plot the same
tree topology. Image by the author, can be reused under a CC-BY-4.0 license.

Tree shape ignores both branch lengths and tree tip labels. For example, the two
trees in figure 10.7 A and B have the same tree shape even though they share no
tips in common. What they do share is that their nodes have the same patterns
in terms of the number of descendants on each “side” of the bifurcation. By
contrast, the phylogenetic tree in 10.7 C has a different shape. (Note that what
I am calling tree shape is sometimes referred to as “unlabeled” tree topology;
e.g. Felsenstein 2004).

Finally, tree balance is a way of expressing differences in the number of de-
scendants between pairs of sister lineages at different points in a phylogenetic
tree. For example, consider the phylogenetic tree depicted in figure 10.7B. The
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Figure 10.7. Two different phylogenetic trees sharing the same tree shape (A
and B), and one with a different shape (C). Image by the author, can be reused
under a CC-BY-4.0 license.
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deepest split in that tree separates a clade with five species (trout, hippo, blue-
jay, periwinkle snail, glass squid) from a clade with a single species (Shiitake
mushroom), and so that node in the tree is unbalanced with a (5, 1) pattern.
By contrast, the deepest split in 10.7C separates two clades of equal size. In
that tree, the deepest node is balanced with a (3, 3) pattern. A number of
approaches in macroevolution use balance at nodes and across whole trees to
try to capture important evolutionary patterns.

We can start to understand these approaches by considering the balance of a
single node n in a phylogenetic tree. There are two clades descended from this
node; let’s call them a and b. We assume that the total number of species
descended from the node Ntotal = Na + Nb is constant and that neither Na nor
Nb is zero. An important result, first discussed by Farris (1976) for a pure-birth
model, is that all possible numerical divisions of Ntotal into Na + Nb are equally
probable. For example, if Ntotal = 10, then all possible divisions: 1 + 9, 2 + 8,
3 + 7, 4 + 6, 5 + 5, 6 + 4, 7 + 3, 8 + 2, and 9 + 1 are all equally probable, so that
each will be predicted to occur with a probability 1/9. Formally,

(eq. 10.17)
p(Na | Ntotal) = 1

Ntotal − 1

Note that there is a subtle difference between equation 10.2 above and some
equations in the literature, e.g. Slowinski and Guyer (1993). This difference has
to do with whether we label the two descendent clades, a and b, or not; if the
clades are unlabeled, then there is no difference between 4+6 and 6+4, so that
the probability that the largest clade, whichever it might be, has 6 species is
twice what is given by my equation.

Equation 10.17 applies even if there is extinction, as long as both sister clades
have the same speciation and extinction rates (Slowinski and Guyer 1993). This
equation has been used to compare diversification rates between sister clades,
either for a single pair or across multiple pairs (see Chapter 11).

Tree balance statistics provide a way of comparing numbers of taxa across all
of the nodes in a phylogenetic tree simultaneously. There are a surprisingly
large number of tree balance statistics, but all rely on summarizing information
about the balance of each node across a whole tree. Colless’ index Ic (Colless
1982) is one of the simplest – and, perhaps, most commonly used – indices of
tree balance. Ic is the sum of the difference in the number of tips subtended on
each side of every node in the tree, standardized by the maximum that such a
sum can achieve:

(eq. 10.18)

IC =

∑
allnodes

(NL − NR)

(N − 1)(N − 2)/2

If the tree is perfectly balanced (only possible when N is some power of 2, e.g. 2,
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4, 8, 16, etc.), then IC = 0 (Figure 10.7C). By contrast, if the tree is completely
pectinate, which means that each split in the tree contrasts a clade with 1
species with the rest of the species in the clade, then IC = 1 (Figure 10.7A). All
phylogenetic trees have values of IC between 0 and 1 (Figure 10.7B).

Figure 10.8. A. a pectinate tree (IC = 1); B. a random tree (0 < IC < 1); C. A
balanced tree (IC = 0). Image by the author, can be reused under a CC-BY-4.0
license.

There are a number of other indices of phylogenetic tree balance (reviewed
in Mooers and Heard 1997). All of these indices are used in a similar way:
one can then compare the value of the tree index to what one might expect
under a particular model of diversification, typically birth-death. In fact, since
these indices focus on tree topology and ignore branch lengths, one can actually
consider their general behavior under a set of equal-rates Markov (ERM) models.
This set includes any model where birth and death rates are equal across all
lineages in a phylogenetic tree at a particular time. ERM models include birth-
death models as described above, but also encompass models where birth and/or
death rates change through time.

Section 10.6: Lineage-through-time plots

The other main way to quantify phylogenetic tree shape is by making lineage-
through-time plots. These plots have time along the x axis (from the root of the
tree to the present day), and the reconstructed number of lineages on the y-axis
(Figure 10.8). Since we are usually considering birth-death models, where the
number of lineages is expected to grow (or shrink) exponentially through time,
then it is typical practice to log-transform the y-axis.

Lineage-through-time plots are effective ways to visualize patterns of lineage
diversification through time. Under a pure-birth model on a semi-log scale, LTT
plots follow a straight line on average (Figure 10.9A). By contrast, extinction
should leave a clear signal in LTT plots because the probability of a lineage
going extinct depends on how long it has been around; old lineages are much
more likely to have been hit by extinction than relatively young lineages. We
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Figure 10.9. Lineage-through-time plot. Image by the author, can be reused
under a CC-BY-4.0 license.
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see this reflected in LTT plots as the “pull of the present” – an upturn in the
slope of the LTT plot near the present day (Figure 10.9B). Incomplete sampling
– that is, not sampling all of the living species in a clade – can also have a huge
impact on the shape of LTT plots (Figure 10.9C). We will discuss LTT plots
further in chapter 11, where we will use them to make inferences about patterns
of lineage diversification through time.

Figure 10.10. Example lineage-through-time plots. Image by the author, can
be reused under a CC-BY-4.0 license.

Section 10.7: Chapter Summary

In this chapter, I introduced birth-death models and summarized their basic
mathematical properties. Birth-death models predict patterns of species diver-
sity over time intervals, and can also be used to model the growth of phylogenetic
trees. We can visualize these patterns by measuring tree balance and creating
lineage-through-time (LTT) plots.
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Chapter 11: Fitting birth-death models

Section 11.1: Hotspots of diversity

The number of species on the Earth remains highly uncertain, but our best
estimates are around 10 million (Mora et al. 2011). This is a mind-boggling
number, and far more than have been described. As far as we know, all of
those species are descended from a single common ancestor that lived some 4.2
billion years ago (Hedges and Kumar 2009). All of these species formed by the
process of speciation, the process by which one species splits into two (or more)
descendants (Coyne and Orr 2004).

Some parts of the tree of life have more species than others. This imbalance in
diversity tells us that speciation is much more common in some lineages than
others (Mooers and Heard 1997). Likewise, numerous studies have argued that
certain habitats are “hotbeds” of speciation (e.g. Hutter et al. 2017; Miller and
Wiens 2017). For example, the high Andes ecosystem called the Páramo - a
peculiar landscape of alien-looking plants and spectacled bears - might harbor
the highest speciation rates on the planet (Madriñán et al. 2013).

Figure 11.1 Páramo ecosystem, Chingaza Natural National Park, Colombia.
Photo taken by the author, can be reused under a CC-BY-4.0 license.

In this chapter we will explore how we can learn about speciation and extinction
rates from the tree of life. We will use birth-death models, simple models of how
species form and go extinct through time. Birth-death models can be applied to
data on clade ages and diversities, or fit to the branching times in phylogenetic
trees. We will explore both maximum likelihood and Bayesian methods to do
both of these things.
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Section 11.2: Clade age and diversity

If we know the age of a clade and its current diversity, then we can calculate
the net diversification rate for that clade. Before presenting equations, I want
to make a distinction between two different ways that one can measure the age
of a clade: the stem age and the crown age. A clade’s crown age is the age of
the common ancestor of all species in the clade. By contrast, a clade’s stem age
measures the time that that clade descended from a common ancestor with its
sister clade. The stem age of a clade is always at least as old, and usually older,
than the crown age.

Figure 11.2. Crown and stem age of a clade of interest (highlighted in red).
Image by the author, can be reused under a CC-BY-4.0 license.

Magallón and Sanderson (2001) give an equation for the estimate of net diver-
sification rate given clade age and diversity:

(eq. 11.1)

r̂ = ln(n)
tstem

where n is the number of species in the clade at the present day and tstem is
the stem group age. In this equation we also see the net diversification rate
parameter, r = λ − µ (see Chapter 10). This is a good reminder that this
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parameter best predicts how species accumulate through time and reflects the
balance between speciation and extinction rates.

Alternatively, one can use tcrown, the crown group age:

(eq. 11.2)

r̂ = ln(n) − ln(2)
tcrown

The two equations differ because at the crown group age one is considering the
clade’s diversification starting with two lineages rather than one (Figure 11.2).

Even though these two equations reflect the balance of births and deaths through
time, they give ML estimates for r only under a pure birth model where there
is no extinction. If there has been extinction in the history of the clade, then
our estimates using equations 11.1 and 11.2 will be biased. The bias comes
from the fact that we see only clades that survive to the present day, and miss
any clades of the same age that died out before they could be observed. By
observing only the “winners” of the diversification lottery, we overestimate the
net diversification rate. If we know the relative amount of extinction, then we
can correct for this bias.

Under a scenario with extinction, one can define ϵ = µ/λ and use the following
method-of-moments estimators from Rohatgi (1976, following the notation of
Magallon and Sanderson (2001)):

(eq. 11.3)

r̂ = log[n(1 − ϵ) + ϵ]
tstem

for stem age, and

(eq. 11.4)

r̂ =
ln[ n(1−ϵ2)

2 + 2ϵ + (1−ϵ)
√

n(nϵ2−8ϵ+2nϵ+n)
2 ] − ln(2)

tcrown

for crown age. (Note that eq. 11.3 and 11.4 reduce to 11.1 and 11.2, respectively,
when ϵ = 0). Of course, we usually have little idea what ϵ should be. Common
practice in the literature is to try a few different values for ϵ and see how the
results change (e.g. Magallon and Sanderson 2001).

Magallón and Sanderson (2001), following Strathmann and Slatkin (1983), also
describe how to use eq. 10.13 and 10.15 to calculate confidence intervals for the
number of species at a given time.

As a worked example, let’s consider the data in table 11.1, which give the crown
ages and diversities of a number of plant lineages in the Páramo (from Madriñán
et al. 2013). For each lineage, I have calculated the pure-birth estimate of specia-
tion rate (from equation 11.2, since these are crown ages), and net diversification
rates under three scenarios for extinction (ϵ = 0.1, ϵ = 0.5, and ϵ = 0.9).
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Lineage n Age r̂pb r̂ϵ=0.1 r̂ϵ=0.5 r̂ϵ=0.9

1 17 0.42 5.10 5.08 4.53 2.15
2 14 10.96 0.18 0.18 0.16 0.07
3 32 3.80 0.73 0.73 0.66 0.36
4 65 2.50 1.39 1.39 1.28 0.78
5 55 3.05 1.09 1.08 1.00 0.59
6 120 4.04 1.01 1.01 0.94 0.62
7 36 4.28 0.68 0.67 0.61 0.34
8 32 7.60 0.36 0.36 0.33 0.18
9 66 1.47 2.38 2.37 2.19 1.34
10 27 8.96 0.29 0.29 0.26 0.14
11 5 3.01 0.30 0.30 0.26 0.09
12 46 0.80 3.92 3.91 3.58 2.07
13 53 14.58 0.22 0.22 0.21 0.12

The table above shows estimates of net diversification rates for Páramo lineages
(data from Madriñán et al. 2013) using equations 11.2 and 11.4. Lineages are as
follows: 1: Aragoa, 2: Arcytophyllum, 3: Berberis, 4: Calceolaria, 5: Draba, 6:
Espeletiinae, 7: Festuca, 8: Jamesonia + Eriosorus, 9: Lupinus, 10: Lysipomia,
11: Oreobolus, 12: Puya, 13: Valeriana.

Inspecting the last four columns of this table, we can make a few general observa-
tions. First, these plant lineages really do have remarkably high diversification
rates (Madriñán et al. 2013). Second, the net diversification rate we estimate
depends on what we assume about relative extinction rates (ϵ). You can see
in the table that the effect of extinction is relatively mild until extinction rates
are assumed to be quite high (ϵ = 0.9). Finally, assuming different levels of
extinction affects the diversification rates but not their relative ordering. In
all cases, net diversification rates for Aragoa, which formed 17 species in less
than half a million years, is higher than the rest of the clades. This relationship
holds only when we assume relative extinction rates are constant across clades,
though. For example, the net diversification rate we calculate for Calceolaria
with ϵ = 0 is higher than the calculated rate for Aragoa with ϵ = 0.9. In other
words, we can’t completely ignore the role of extinction in altering our view of
present-day diversity patterns.

We can also estimate birth and death rates for clade ages and diversities using
ML or Bayesian approaches. We already know the full probability distribution
for birth-death models starting from any standing diversity N(0) = n0 (see
equations 10.13 and 10.15). We can use these equations to calculate the like-
lihood of any particular combination of N and t (either tstem or tcrown) given
particular values of λ and µ. We can then find parameter values that maximize
that likelihood. Of course, with data from only a single clade, we cannot es-
timate parameters reliably; in fact, we are trying to estimate two parameters
from a single data point, which is a futile endeavor. (It is common, in this case,
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to assume some level of extinction and calculate net diversification rates based
on that, as we did in Table 11.1 above).

One can also assume that a set of clades have the same speciation and extinction
rates and fit them simultaneously, estimating ML parameter values. This is the
approach taken by Magallón and Sanderson (2001) in calculating diversification
rates across angiosperms. When we apply this approach to the Paramo data,
shown above, we obtain ML estimates of r̂ = 0.27 and ϵ̂ = 0. If we were forced
to estimate an overall average rate of speciation for all of these clades, this might
be a reasonable estimate. However, the table above also suggests that some of
these clades are diversifiying faster than others. We will return to the issue of
variation in diversification rates across clades in the next chapter.

We can also use a Bayesian approach to calculate posterior distributions for
birth and death rates based on clade ages and diversities. This approach has
not, to my knowledge, been implemented in any software package, although the
method is straightforward (for a related approach, see Höhna et al. 2016). To
do this, we will modify the basic algorithm for Bayesian MCMC (see Chapter
2) as follows:

1. Sample a set of starting parameter values, r and ϵ, from their prior dis-
tributions. For this example, we can set our prior distribution for both
parameters as exponential with a mean and variance of λprior (note that
your choice for this parameter should depend on the units you are using,
especially for r). We then select starting r and ϵ from their priors.

2. Given the current parameter values, select new proposed parameter values
using the proposal density Q(p′|p). For both parameter values, we can use
a uniform proposal density with width wp, so that Q(p′|p) U(p−wp/2, p+
wp/2). We can either choose both parameter values simultaneously, or
one at a time (the latter is typically more effective).

3. Calculate three ratios:

• a. The prior odds ratio. This is the ratio of the probability of draw-
ing the parameter values p and p′ from the prior. Since we have
exponential priors for both parameters, we can calculate this ratio as
(eq. 11.5):

Rprior = λpriore−λpriorp′

λpriore−λpriorp
= eλprior(p−p′)

• b. The proposal density ratio. This is the ratio of probability of proposals
going from p to p′ and the reverse. We have already declared a symmetrical
proposal density, so that Q(p′|p) = Q(p|p′) and Rproposal = 1.

• c. The likelihood ratio. This is the ratio of probabilities of the data given
the two different parameter values. We can calculate these probabilities
from equations 10.13 or 10.16 (depending on if the data are stem ages or
crown ages).
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4. Find Raccept as the product of the prior odds, proposal density ratio, and
the likelihood ratio. In this case, the proposal density ratio is 1, so (eq.
11.6):

Raccept = Rprior · Rlikelihood

5. Draw a random number u from a uniform distribution between 0 and 1.
If u < Raccept, accept the proposed value of both parameters; otherwise
reject, and retain the current value of the two parameters.

6. Repeat steps 2-5 a large number of times.

When we apply this technique to the Páramo (from Madriñán et al. 2013) and
priors with λprior = 1 for both r and ϵ, we obtain posterior distributions: r
(mean = 0.497, 95% CI = 0.08-1.77) and ϵ (mean = 0.36, 95% CI = 0.02-0.84;
Figure 11.3). Note that these results are substantially different than the ML
estimates. This could be because in our Bayesian analysis our prior on extinction
rates is exponential, and taking the posterior mean gives a high probability for
relatively strong levels of extinction relative to speciation.

Figure 11.3. Posterior distribution for r and ϵ for Páramo clades. Data from
Madriñán et al. (2013), image by the author, can be reused under a CC-BY-4.0
license.

Thus, we can estimate diversification rates from data on clade ages and diversi-
ties. If we have a whole set of such clades, we can (in principal) estimate both
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speciation and extinction rates, so long as we are willing to assume that all of
the clades share equal diversification rates. However, as we will see in the next
section, this assumption is almost always dubious!

Section 11.3: Tree Balance

As we discussed in Chapter 10, tree balance considers how “balanced” the
branches of a phylogenetic tree are. That is, if we look at each node in the
tree, are the two sister clades of the same size (balanced) or wildly different
(imbalanced)?

Birth-death trees have a certain amount of “balance,” perhaps a bit less than
your intuition might suggest (see chapter 10). We can look to real trees to see
if the amount of balance matches what we expect under birth-death models. A
less balanced pattern in real trees would suggest that speciation and/or extinc-
tion rate vary among lineages more than we would expect. By contrast, more
balanced trees would suggest more even and predictable diversification across
the tree of life than expected under birth-death models. This approach traces
back to Raup and colleagues, who applied stochastic birth-death models to pa-
leontology in a series of influential papers in the 1970s (e.g. Raup et al. 1973,
Raup and Gould (1974)). I will show how to do this for both individual nodes
and for whole trees in the following sections.

Section 11.3a: Sister clades and the balance of individual
nodes

For single nodes, we already know that the distribution of sister taxa species
richness is uniform over all possible divisions of Nn species into two clades of
size Na and Nb (Chapter 11). This idea leads to simple test of whether the
distribution of species between two sister clades is unusual compared to the
expectation under a birth-death model (Slowinski and Guyer 1993). This test
can be used, for example, to test whether the diversity of exceptional clades,
like passerine birds, is higher than one would expect when compared to their
sister clade. This is the simplest measure of tree balance, as it only considers
one node in the tree at a time.

Slowinsky and Guyer (1993) developed a test based on calculating a P-value for
a division at least as extreme as seen in a particular comparison of sister clades.
We consider Nn total species divided into two sister clades of sizes Na and Nb,
where Na < Nb and Na + Nb = Nn. Then:

(eq. 11.7) If Na ̸= Nb:
P = 2Na

Nn − 1

If Na = Nb or P > 1 then set P = 1
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For example, we can assess diversification in the Andean representatives of the
legume genus Lupinus (Hughes and Eastwood 2006). This genus includes one
young radiation of 81 Andean species, spanning a wide range of growth forms.
The likely sister clade to this spectacular Andean radiation is a clade of Lupinus
species in Mexico that includes 46 species (Drummond et al. 2012). In this case
Na = 81 − 46 = 35, and we can then calculate a P-value testing the null
hypothesis that both of these clades have the same diversification rate:

(eq. 11.8)
P = 2Na

Nn − 1
= 2 · 35

81 − 1
= 0.875

We cannot reject the null hypothesis. Indeed, later work suggests that the actual
increase in diversification rate for Lupinus occurred deeper in the phylogenetic
tree, in the ancestor of a more broadly ranging New World clade (Hughes and
Eastwood 2006; Drummond et al. 2012).

Often, we are interested in testing whether a particular trait - say, dispersal
into the Páramo - is responsible for the increase in species richness that we
see in some clades. In that case, a single comparison of sister clades may be
unsatisfying, as sister clades almost always differ in many characters, beyond
just the trait of interest. Even if the clade with our putative “key innovation”
is more diverse, we still might not be confident in inferring a correlation from a
single observation. We need replication.

To address this problem, many studies have used natural replicates across the
tree of life, comparing the species richnesses of many pairs of sister clades that
differ in a given trait of interest. Following Slowinsky and Guyer (1993), we
could calculate a p-value for each clade, and then combine those p-values into
an overall test. In this case, one clade (with diversity N1) has the trait of interest
and the other does not (N0), and our formula is half of equation 11.5 since we
will consider this a one-tailed test:

(eq. 11.9)
P = N0

Nn − 1

When analyzing replicate clade comparisons - e.g. many sister clades, where in
each case one has the trait of interest and the other does not - Slowinsky and
Guyer (1993) recommended combining these p-values using Fisher’s combined
probability test, so that:

(eq. 11.10)
χ2

combined = −2
∑

ln(Pi)

Here, the Pi values are from i independent sister clade comparisons, each using
equation 11.9. Under the null hypothesis where the character of interest does
not increase diversification rates, the test statistic, χ2

combined, should follow a
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chi-squared distribution with 2k degrees of freedom where k is the number of
tests. But before you use this combined probability approach, see what happens
when we apply it to a real example!

As an example, consider the following data, which compares the diversity of
many sister pairs of plants. In each case, one clade has fleshy fruits and the
other dry (data from Vamosi and Vamosi 2005):

Fleshy fruit clade nfleshy Dry fruit clade ndry

A 1 B 2
C 1 D 64
E 1 F 300
G 1 H 89
I 1 J 67
K 3 L 4
M 3 N 34
O 5 P 10
Q 9 R 150
S 16 T 35
U 33 V 2
W 40 X 60
Y 50 Z 81
AA 100 BB 1
CC 216 DD 3
EE 393 FF 1
GG 850 HH 11
II 947 JJ 1
KK 1700 LL 18

The clades in the above table are as follows: A: Pangium, B: Acharia+Kigellaria,
C: Cyrilla, D: Clethra, E: Roussea, F: Lobelia, G: Myriophylum + Haloragis +
Penthorum, H: Tetracarpaea, I: Austrobaileya, J: Illicium+Schisandra, K: David-
sonia, L: Bauera, M: Mitchella, N: Pentas, O: Milligania�, P: Borya, Q: Sam-
bucus, R:�Viburnum, S: Pereskia, T: Mollugo, U: Decaisnea + Sargentodoxa
+ Tinospora + Menispermum +� Nandina Caulophyllum + Hydrastis + Glau-
cidium, V: Euptelea, W: Tetracera, X: Dillenia, Y: Osbeckia, Z: Mouriri, AA:
Hippocratea, BB: Plagiopteron, CC: Cyclanthus + Sphaeradenia + Freycinetia,
DD: Petrosavia + Japonlirion, EE: Bixa, FF: Theobroma + Grewia + Tilia +
Sterculia + Durio, GG: Impatiens, HH: Idria, II: Lamium + Clerodendrum +
Callicarpa + Phyla + Pedicularis + Paulownia, JJ: Euthystachys, KK: Calli-
carpa + Phyla + Pedicularis + Paulownia + Solanum, LL: Solanum.

The individual clades show mixed support for the hypothesis, with only 7 of
the 18 comparisons showing higher diversity in the fleshy clade, but 6 of those
7 comparisons significant at P < 0.05 using equation 11.9. The combined prob-
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ability test gives a test statistic of χ2
combined = 72.8. Comparing this to a

χ2 distribution with 36 degrees of freedom, we obtain P = 0.00027, a highly
significant result. This implies that fleshy fruits do, in fact, result in a higher
diversification rate.

However, if we test the opposite hypothesis, we see a problem with the combined
probability test of equation 11.10 (Vamosi and Vamosi 2005). First, notice
that 11 of 18 comparisons show higher diversity in the non-fleshy clade, with 4
significant at P < 0.05. The combined probability test gives χ2

combined = 58.9
and P = 0.0094. So we reject the null hypothesis and conclude that non-fleshy
fruits diversify at a higher rate! In other words, we can reject the null hypothesis
in both directions with this example.

What’s going on here? It turns out that this test is very sensitive to outliers -
that is, clades with extreme differences in diversity. These clades are very differ-
ent than what one would expect under the null hypothesis, leading to rejection
of the null - and, in some cases with two characters, when there are outliers
on both sides (e.g. the proportion of species in each state has a u-shaped distri-
bution; Paradis 2012) we can show that both characters significantly increase
diversity (Vamosi and Vamosi 2005)!

Fortunately, there are a number of improved methods that can be used that are
similar in spirit to the original Slowinsky and Guyer test but more statistically
robust (e.g Paradis 2012). For example, we can apply the “richness Yule test”
as described in Paradis (2012), to the data from Vamosi et al. (2005). This
is a modified version of the McConway-Sims test (McConway and Sims 2004),
and compares the likelihood of a equal rate yule model applied to all clades
to a model where one trait is associated with higher or lower diversification
rates. This test requires knowledge of clade ages, which I don’t have for these
data, but Paradis (2012) shows that the test is robust to this assumption and
recommends substituting a large and equal age for each clade. I chose 1000
as an arbitrary age, and found a significant likelihood ratio test (null model
lnL = −215.6, alternative model lnL = −205.7, P = 0.000008). This method
estimates a higher rate of diversification for fleshy fruits (since the age of the
clade is arbitrary, the actual rates are not meaningful, but their estimated ratio
λ1/λ0 = 1.39 suggests that fleshy fruited lineages have a diversification rate
almost 40% higher).

Section 11.3b: Balance of whole phylogenetic trees

We can assess the overall balance of an entire phylogenetic tree using tree balance
statistics. As discussed, I will describe just one common statistic, Colless’ I,
since other metrics capture the same pattern in slightly different ways.

To calculate Colless’ I, we can use equation 10.18. This result will depend
strongly on tree size, and so is not comparable across trees of different sizes; to
allow comparisons, Ic is usually standardized by subtracting the expected mean
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for trees of that size under an random model (see below), and dividing by the
standard deviation. Both of these can be calculated analytically (Blum et al.
2006), and standardized Ic calculated using a small approximation (following
Bortolussi et al. 2006) as:

(eq. 11.11)

I
′

c = Ic − n ∗ log(n) − n(γ − 1 − log(2))
n

Since the test statistics are based on descriptions of patterns in trees rather
than particular processes, the relationship between imbalance and evolutionary
processes can be difficult to untangle! But all tree balance indices allow one to
reject the null hypothesis that the tree was generated under a birth-death model.
Actually, the expected patterns of tree balance are absolutely identical under a
broader class of models called “Equal-Rates Markov” (ERM) models (Harding
1971; Mooers and Heard 1997). ERM models specify that diversification rates
(both speciation and extinction) are equal across all lineages for any particular
point in time. However, those rates may or may not change through time.
If they don’t change through time, then we have a constant rate birth-death
model, as described above - so birth-death models are ERM models. But ERM
models also include, for example, models where birth rates slow through time,
or extinction rates increase through time, and so on. As long as the changes in
rates occur in exactly the same way across all lineages at any time, then all of
these models predict exactly the same pattern of tree balance.

Typical steps for using tree balance indices to test the null hypothesis that the
tree was generated under an ERM model are as follows:

1. Calculate tree balance using a tree balance statistic.
2. Simulate pure birth trees to general a null distribution of the test statistic.

We are considering the set of ERM models as our null, but since pure-birth
is simple and still ERM we can use it to get the correct null distribution.

3. Compare the actual test statistic to the null distribution. If the actual test
statistic is in the tails of the null distribution, then your data deviates from
an ERM model.

Step 2 is unnecessary in cases where we know null distributions for tree balance
statistics analytically, true for some (but not all) balance metrics (e.g. Blum
and François 2006). There are also some examples in the literature of consider-
ing null distributions other than ERM. For example, Mooers and Heard (1997)
consider two other null models, PDA and EPT, which consider different statis-
tical distributions of tree shapes (but both of these are difficult to tie to any
particular evolutionary process).

Typically, phylogenetic trees are more imbalanced than expected under the ERM
model. In fact, this is one of the most robust generalizations that one can make
about macroevolutionary patterns in phylogenetic trees. This deviation means
that diversification rates vary among lineages in the tree of life. We will discuss
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how to quantify and describe this variation in later chapters. These tests are
all similar in that they use multiple non-nested comparisons of species richness
in sister clades to calculate a test statistic, which is then compared to a null
distribution, usually based on a constant-rates birth-death process (reviewed in
Vamosi and Vamosi 2005; Paradis 2012).

As an example, we can apply the whole-tree balance approach to the tree of
Lupinus (Drummond et al. 2012). For this tree, which has 137 tips, we calculate
Ic = 1010 and I

′

c = 3.57. This is much higher than expected by chance under an
ERM model, with P = 0.0004. That is, our tree is significantly more imbalanced
than expected under a ERM model, which includes both pure birth and birth-
death. We can safely conclude that there is variation in speciation and/or
extinction rates across lineages in the tree.

Section 11.4: Fitting birth-death models to branching times

Another approach that uses more of the information in a phylogenetic tree
involves fitting birth-death models to the distribution of branching times. This
approach traces all the way back to Yule (1925), who first applied stochastic
process models to the growth of phylogenetic trees. More recently, a series
of papers by Raup and colleagues (Raup et al. 1973; Raup and Gould 1974;
Gould et al. 1977; Raup 1985) spurred modern approaches to quantitative
macroevolution by simulating random clades, then demonstrating how variable
such clades grown under simple birth-death models can be.

Most modern approaches to fitting birth-death models to phylogenetic trees use
the intervals between speciation events on a tree - the “waiting times” between
successive speciation - to estimate the parameters of birth-death models. Figure
10.2 shows these waiting times. Frequently, information about the pattern of
species accumulation in a phylogenetic tree is summarized by a lineage-through-
time (LTT) plot, which is a plot of the number of lineages in a tree against time
(see Figure 10.9). As I introduced in Chapter 10, the y-axis of LTT plots is
log-transformed, so that the expected pattern under a constant-rate pure-birth
model is a straight line. Note also that LTT plots ignore the relative order
of speciation events. Stadler (2013b) calls models justifying such an approach
“species-exchangable” models - we can change the identity of species at any time
point without changing the expected behavior of the model. Because of this,
approaches to understanding birth-death models based on branching times are
different from - and complementary to - approaches based on tree topology, like
tree balance.

As discussed in the previous chapter, even though we often have no information
about extinct species in a clade, we can still (in theory) infer the presence of
extinction from an LTT plot. The signal of extinction is an excess of young
lineages, which is seen as the “pull of the recent” in our LTT plots (Figure
10.10). In the next chapter, I will demonstrate how statistical approaches can
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capture this pattern in a more rigorous way.

Section 11.4a: Likelihood of waiting times under a birth-death model

In order to use ML and Bayesian methods for estimating the parameters of birth-
death models from comparative data, we need to write down the likelihoods of
the waiting times between speciation events in a tree. There is a little bit
of variation in notation in the literature, so I will follow Stadler (2013b) and
Maddison et al. (2007), among others, to maintain consistency. We will assume
that the clade begins at time t1 with a pair of species. Most analyses follow this
convention, and condition the process as starting at the time t1, representing
the node at the root of the tree. This makes sense because we rarely have
information on the stem age of our clade. We will also condition on both of
these initial lineages surviving to the present day, as this is a requirement to
obtain a tree with this crown age (e.g. Stadler 2013a equation 5).

Speciation and extinction events occur at various times, and the process ends at
time 0 when the clade has n extant species - that is, we measure time backwards
from the present day. Extinction will result in species that do not extend all the
way to time 0. For now, we will assume that we only have data on extant species.
We will refer to the phylogenetic tree that shows branching times leading to the
extant species as the reconstructed tree (Nee et al. 1994). For a reconstructed
tree with n species, there are n − 1 speciation times, which we will denote as t1,
t2, t3, …, tn−1. The leaves of our ultrametric tree all terminate at time 0.

Note that in this notation, t1 > t2 > · · · > tn−1 > 0, that is, our speciation
times are measured backwards from the tips, and as we increase the index
the times are constantly decreasing [this is an important notational difference
between Stadler (2013a), used here, and Nee (1994 and others), the latter of
which considers the time intervals between speciation events, e.g. t1 − t2 in our
notation]. For now, we will assume complete sampling; that is, all n species
alive at the present day are represented in the tree.

We will now derive a likelihood of of observing the set of speciation times t1, t2,
…, tn−1 given the extant diversity of the clade, n, and our birth-death model
parameters λ and µ. To do this, we will follow very closely an approach based
on differential equations introduced by Maddison et al. (2007).

The general idea is that we will assign values to these probabilities at the tips of
the tree, and then define a set of rules to update them as we flow back through
the tree from the tips to the root. When we arrive at the root of the tree, we
will have the probability of observing the actual tree given our model - that is,
the likelihood. This is another pruning algorithm.

To begin with, we need to keep track of two probabilities: DN (t), the probability
that a lineage at some time t in the past will evolve into the extant clade N as
observed today; and E(t), the probability that a lineage at some time t will go

176



completely extinct and leave no descendants at the present day. (Later, we will
redefine E(t) so that it includes the possibility that the lineages has descendants
but none have been sampled in our data). We then apply these probabilities to
the tree using three main ideas (Figure 11.4)

Figure 11.4. General outline of steps for calculating likelihood of a tree under
a birth-death model. Image inspired by Maddison et al. (2007) and created by
the author, can be reused under a CC-BY-4.0 license.

1. We define our starting points at the tips of the tree.

2. We define how the probabilities defined in (1) change as we move back-
wards along branches of the tree.

3. We define what happens to our probabilities at the tree nodes.

Then, starting at the tips of the tree, we make our way to the root. At each
tip, we have a starting value for both DN (t) and E(t). We move backwards
along the branches of the tree, updating both probabilities as we go using step
2. When two branches come togther at a node, we combine those probabilities
using step 3.

In this way, we walk through the tree, starting with the tips and passing over
every branch and node (Figure 11.4). When we get to the root we will have
DN (troot), which is the full likelihood that we want.
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You might wonder why we need to calculate both DN (t) and E(t) if the likeli-
hood is captured by DN (t) at the root. The reason is that the probability of
observing a tree is dependent on these extinction probabilities calculated back
through time. We need to keep track of E(t) to know about DN (t) and how
it changes. You will see below that E(t) appears directly in our differential
equations for DN (t).

First, the starting point. Since every tip i represents a living lineage, we know
it is alive at the present day - so we can define DN (t) = 1. We also know that it
will not go extinct before being included in the tree, so E(t) = 0. This gives our
starting values for the two probabilities at each tip in the tree (Figure 11.5).

Figure 11.5. Starting points at tree tips for likelihood probability calculations.
Image inspired by Maddison et al. (2007) and created by the author, can be
reused under a CC-BY-4.0 license.

Next, imagine we move backwards along some section of a tree branch with no
nodes. We will consider an arbitrary branch of the tree. Since we are going
back in time, we will start at some node in the tree N, which occurs at a time
tN , and denote the time going back into the past as t (Figure 11.6).

Since that section of branch exists in our tree, we know two things: the lineage
did not go extinct during that time, and if speciation occurred, the lineage
that split off did not survive to the present day. We can capture these two
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Figure 11.6. Updating DN (t) and calculating E(t) along a tree branch. Image
inspired by Maddison et al. (2007) and created by the author, can be reused
under a CC-BY-4.0 license.
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possibilities in a differential equation that considers how our overall likelihood
changes over some very small unit of time (Maddison et al. 2007).

(eq. 11.12)
dDN (t)

dt
= −(λ + µ)DN (t) + 2λE(t)DN (t)

Here, the first part of the equation, −(λ+µ)DN (t), represents the probability of
not speciating nor going extinct, while the second part, 2λE(t)DN (t), represents
the probability of speciation followed by the ultimate extinction of one of the
two daughter lineages. The 2 in this equation appears because we must account
for the fact that, following speciation from an ancestor to daughters A and B,
we would see the same pattern no matter which of the two descendants survived
to the present.

We also need to calculate our extinction probability going back through the tree
(Maddison et al. 2007):

(eq. 11.13)
dE(t)

dt
= µ − (µ + λ)E(t) + λE(t)2

The three parts of this equation represent the three ways a lineage might not
make it to the present day: either it goes extinct during the interval being
considered (µ), it survives that interval but goes extinct some time later (−(µ +
λ)E(t)), or it speciates in the interval but both descendants go extinct before
the present day (λE(t)2) (Maddison et al. 2007). Unlike the DN (t) term, this
probability depends only on time and not the topological structure of the tree.

We will also specify that λ > µ; it is possible to relax that assumption, but it
makes the solution more complicated.

We can solve these equations so that we will be able to update the probability
moving backwards along any branch of the tree with length t. First, solving
equation 11.13 and using our initial condition E(0) = 0:

(eq. 11.14)
E(t) = 1 − λ − µ

λ − (λ − µ)e(λ−µ)t

We can now substitute this expression for E(t) into eq. 11.12 and solve.

(eq. 11.15)

DN (t) = e−(λ−µ)(t−tN ) (λ − (λ − µ)e(λ−µ)tN )2

(λ − (λ − µ)e(λ−µ)t)2 · DN (tN )

Remember that tN is the depth (measured from the present day) of node N
(Figure 11.6).
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Finally, we need to consider what happens when two branches come together at
a node. Since there is a node, we know there has been a speciation event. We
multiply the probability calculations flowing down each branch by the probabil-
ity of a speciation event [Maddison et al. (2007); Figure 11.7].

Figure 11.7. Updating DN (t) and E(t) along a tree branch. Image inspired
by Maddison et al. (2007) and created by the author, can be reused under a
CC-BY-4.0 license.

So:

(eq. 11.16)
DN ′(t) = DN (t)DM (t)λ

Where clade N’ is the clade made up of the combination of two sister clades N
and M.

To apply this approach across an entire phylogenetic tree, we multiply equa-
tions 11.15 and 11.16 across all branches and nodes in the tree. Thus, the full
likelihood is (Maddison et al. 2007; Morlon et al. 2011):

(eq. 11.17)

L(t1, t2, . . . , tn) = λn−1[ 2n−2∏
k=1

e(λ−µ)(tk,b−tk,t) · (λ − (λ − µ)e(λ−µ)tk,t)2

(λ − (λ − µ)e(λ−µ)tk,b)2

]
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Here, n is the number of tips in the tree (note that the original derivation in
Maddison uses n as the number of nodes, but I have changed it for consistency
with the rest of the book).

The product in equation 11.17 is taken over all 2n−2 branches in the tree. Each
branch k has two times associated with it, one towards the base of the tree, tk,b,
and one towards the tips, tk,t.

Most methods fitting birth-death models to trees condition on the existence
of a tree - that is, conditioning on the fact that the whole process did not go
extinct before the present day, and the speciation event from the root node led
to two surviving lineages. To do this conditioning, we divide equation 11.17 by
λ[1 − E(troot)]2 (Morlon et al. 2011; Stadler 2013a).

Additionally, likelihoods for birth-death waiting times, for example those in
the original derivation by Nee, include an additional term, (n − 1)!. This is
because there are (n − 1)! possible topologies for any set of n − 1 waiting times,
all equally likely. Since this term is constant for a given tree size n, then
leaving it out has no influence on the relative likelihoods of different parameter
values - but it is necessary to know about this multiplier if comparing likelihoods
across different models for model selection, or comparing the output of different
programs (Stadler 2013a).

Accounting for these two factors, the full likelihood is:

(eq. 11.18)

L(τ) = (n − 1)!
λn−2[ ∏2n−2

k=1 e(λ−µ)(tk,b−tk,t) · (λ−(λ−µ)e(λ−µ)tk,t )2

(λ−(λ−µ)e(λ−µ)tk,b )2

]
[1 − E(troot)]2

where:

(eq. 11.19)
E(troot) = 1 − λ − µ

λ − (λ − µ)e(λ−µ)troot

Section 11.4b: Using maximum likelihood to fit a birth-death model

Given equation 11.19 for the likelihood, we can estimate birth and death rates
using both ML and Bayesian approaches. For the ML estimate, we maximize
equation 11.19 over λ and µ. For a pure-birth model, we can set µ = 0, and the
maximum likelihood estimate of λ can be calculated analytically as:

(eq. 11.20)
λ = n − 2

sbranch

where sbranch is the sum of branch lengths in the tree,
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(eq. 11.21)

sbranch =
n−1∑
i=1

ti + tn−1

Equation 11.21 is also called the Kendal-Moran estimator of the speciation rate
(Nee 2006).

For a birth-death model, we can use numerical methods to maximize the likeli-
hood over λ and µ.

For example, we can use ML to fit a birth-death model to the Lupinus tree
(Drummond et al. 2012), which has 137 tip species and a total age of 16.6
million years. Doing so, we obtain ML parameter estimates of λ = 0.46 and
µ = 0.20, with a log-likelihood of lnLbd = 262.3. Compare this to a pure
birth model on the same tree, which gives λ = 0.35 and lnLpb = 260.4. One
can compare the fit of these two models using AIC scores: AICbd = −520.6
and AICpb = −518.8, so the birth-death model has a better (lower) AIC score
but by less than two AIC units. A likelihood ratio test, which gives ∆ = 3.7
and P = 0.054. In other words, we estimate a non-zero extinction rate in the
clade, but the evidence supporting that model over a pure-birth model is not
particularly strong. Even if this model selection is a bit ambiguous, remember
that we have also estimated parameters using all of the information that we
have in the waiting times of the phylogenetic tree.

Section 11.4c: Using Bayesian MCMC to fit a birth-death model

We can also estimate birth and death rates using a Bayesian MCMC. We can
use exactly the method spelled out above for clade ages and diversities, but
substitute equation 11.11 for the likelihood, thus using the waiting times derived
from a phylogenetic tree to estimate model parameters.

Applying this to Lupines with the same priors as before, we obtain the posterior
distributions shown in figure 11.5. The mean of the posterior for each parameter
is λ = 0.48 and µ = 0.23, quite close to the ML estimates for these parameters.

Section 11.5: Sampling and birth-death models

It is important to think about sampling when fitting birth-death models to phy-
logenetic trees. If any species are missing from your phylogenetic tree, they will
lead to biased parameter estimates. This is because missing species are dispro-
portionally likely to connect to the tree on short, rather than long, branches. If
we randomly sample lineages from a tree, we will end up badly underestimat-
ing both speciation and extinction rates (and wrongly inferring slowdowns; see
chapter 12).
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Figure 11.8. Posterior distribution for b and d for Lupinus. Data from (Drum-
mond et al. 2012), image inspired by Maddison et al. (2007) and created by
the author, can be reused under a CC-BY-4.0 license.
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Fortunately, the mathematics for incomplete sampling of reconstructed phyloge-
netic trees has also been worked out. There are two ways to do this, depending
on how the tree is actually sampled. If we consider the missing species to be
random with respect to the taxa included in the tree, then one can use a uni-
form sampling fraction to account for them. By contrast, we often are in the
situation where we have tips in our tree that are single representatives of diverse
clades (e.g. genera). We usually know the diversity of these unsampled clades in
our tree of representatives. I will follow (Höhna et al. 2011; Höhna 2014) and
refer to this approach as representative sampling (and the previous alternative
as uniform sampling).

For the uniform sampling approach, we use the framework above of calculating
backwards through time, but modify the starting points for each tip in the
tree to reflect f , the probability of sampling a species (following Fitzjohn et al.
(2009)):

(eq. 11.22)
DN (0) = 1 − f

E(0) = f

Repeating the calculations above along branches and at nodes, but with the
starting conditions above, we obtain the following likelihood (FitzJohn et al.
2009):

(eq. 11.23)

L(t1, t2, . . . , tn) = λn−1[ 2n−2∏
k=1

e(λ−µ)(tk,b−tk,t)·

(fλ − (µ − λ(1 − f))e(λ−µ)tk,t)2

(fλ − (µ − λ(1 − f))e(λ−µ)tk,b)2

]
Again, the above formula is proportional to the full likelihood, which is:

(eq. 11.24)

L(τ) = (n − 1)!
λn−2[ ∏2n−2

k=1 e(λ−µ)(tk,b−tk,t) · (fλ−(µ−λ(1−f))e(λ−µ)tk,t )2

(fλ−(µ−λ(1−f))e(λ−µ)tk,b )2

]
[1 − E(troot)]2

and:

(eq. 11.25)
E(troot) = 1 − λ − µ

λ − (λ − µ)e(λ−µ)troot

For representative sampling, one approach is to consider the data as divided
into two parts, phylogenetic and taxonomic. The taxonomic part is the stem
age and extant diversity of the unsampled clades, while the phylogenetic part
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is the relationships among those clades. Following Rabosky and Lovette (2007),
we can then calculate:

(eq. 11.26)
Ltotal = Lphylogenetic · Ltaxonomic

Where Lphylogenetic can be calculated using equation 11.18 and Ltaxonomic calcu-
lated for each clade using equation 10.16 and then multiplied to get the overall
likelihood.

There are two extensions to this approach that are worth mentioning. One is
Hohna’s (2011) diversified sampling (“DS”) model. This model makes a different
assumption: when sampling n taxa from an overall set of m, the deepest n − 1
nodes have been included. Hohna’s approach allows users to fit a model with
representative sampling but without requiring assignment of extant diversity
to each clade. Another approach, by Stadler and Smrckova (2016), calculates
likelihoods for representatively sampled trees and can fit models of time-varying
speciation and extinction rates (see chapter 12).

Section 11.6: Summary

In this chapter, I described how to estimate parameters from birth-death models
using data on species diversity and ages, and how to use patterns of tree balance
to test hypotheses about changing birth and death rates. I also described how to
calculate the likelihood for birth-death models on trees, which leads directly to
both ML and Bayesian methods for estimating birth and death rates. In the next
chapter, we will explore elaborations on birth-death models, and discuss models
that go beyond constant-rates birth-death models to analyze the diversity of life
on Earth.
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Chapter 12: Beyond birth-death models

Section 12.1: Capturing variable evolution

As we discovered in Chapter 11, there are times and places where the tree of
life has grown more rapidly than others. For example, islands and island-like
habitats are sometimes described as hotspots of speciation (Losos and Schluter
2000; Hughes and Eastwood 2006), and diversification rates in such habitats
can proceed at an extremely rapid pace. On a broader scale, many studies
have shown that speciation rates are elevated and/or extinction rates depressed
following mass extinctions (e.g. Sepkoski 1984). Finally, some clades seem
to diversity much more rapidly than others. In my corner of the world, the
Pacific Northwest of the United States, this variation is best seen in our local
amphibians. We have species like the spotted frog and the Pacific tree frog,
which represent two very diverse frog lineages with high diversification rates
(Ranidae and Hylidae, respectively; Roelants et al. 2007). At the same time,
if one drives a bit to the high mountain streams, you can find frogs with tiny
tails. These Inland Tailed Frogs are members of Ascaphidae, a genus with only
two species, one coastal and one inland. (As an aside, the tail, found only in
males, is an intromittent organ used for internal fertilization - analogous to a
penis, but different!) These two tailed frog species are the sister group to a small
radiation of four species frogs in New Zealand (Leopelmatidae, which have no
tails). These two clades together - just six species - make up the sister clade to
all other frogs, nearly 7000 species (Roelants et al. 2007; Jetz and Pyron 2018).
We seek to explain patterns like this contrast in the diversity of two groups
which decend from a common ancestor and are, thus, the same age.

Simple, constant-rate birth-death models are not adequate to capture the com-
plexity and dynamics of speciation and extinction across the tree of life. Spe-
ciation and extinction rates vary through time, across clades, and among ge-
ographic regions. We can sometimes predict this variation based on what we
know about the mechanisms that lead to speciation and/or extinction.

In this chapter, I will explore some extensions to birth-death models that allow
us to explore diversification in more detail. This chapter also leads naturally
to the next, chapter 13, which will consider the case where diversification rates
depend on species’ traits.

Section 12.2: Variation in diversification rates across clades

We know from analyses of tree balance that the tree of life is more imbalanced
than birth-death models predict. We can explore this variation in diversification
rates by allowing birth and death models to vary along branches in phylogenetic
trees. The simplest scenario is when one has a particular prediction about
diversification rates to test. For example, we might wonder if diversification
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Figure 12.1. Contrasts in frog diversity. Spotted frogs (A) and Pacific tree frogs
(B) come from diverse clades, while tailed frogs (C) and New Zealand frogs
(D) are from depauperate clades. Photo credits: A: Sean Neilsen / Wikimedia
Commons / Public Domain, B: User:The High Fin Sperm Whale / Wikimedia
Commons / CC-BY-SA-3.0, C: User:Leone.baraldi / Wikimedia Commons /
CC-BY-SA-4.0, D: Phil Bishop / Wikimedia Commons / CC-BY-SA-2.5.
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rates in one clade (clade A in Figure 12.2) are higher than in the rest of the
phylogenetic tree. We can test this hypothesis by fitting a multiple-rate birth-
death model.

The simplest method to carry out this test is by using model selection in a
ML framework (Rabosky et al. 2007). To do this, we first fit a constant-rates
birth-death model to the entire tree, and calculate a likelihood. We can then fit
variable-rates birth-death models to the data, comparing the fit of these models
using either likelihood ratio tests or AICC . The simplest way to fit a variable-
rates model is to adapt the likelihood formula in equation 11.18 (or eq. 11.24
if species are unsampled). We calculate the likelihood in two parts, one for the
background part of the tree (with rates λB and µB) and one for the focal clade
that may have different diversification dynamics (with rates λA and µA). We
can then compare this model to one where speciation and extinction rates are
constant through time.

Figure 12.2. A phylogenetic tree including three clades, illustrating two possible
models for diversification: a constant rates model, where all three clades have
the same diversification parameters λT and µT , and a variable rates model,
where clade A has parameters (λA and µA) that differ from those of the other
two clades (λB and µB). Image by the author, can be reused under a CC-BY-4.0
license.

Consider the example in Figure 12.2. We would like to know whether clade A
has speciation and extinction rates, λA and µA, that differ from the background
rates, λB and µB – we will call this a “variable rates” model. The alternative
is a “constant rates” model where the entire clade has constant rate parameters
λT and µT . These two models are nested, since the constant-rates model is a
special case of the variable rates model where λT = λA = λB and µT = µA = µB .
Calculating the likelihood for these two models is reasonably straightforward -
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we simply calculate the likelihood for each section of the tree using the relevant
equation from Chapter 11, and then multiply the likelihoods from the two parts
of the tree (or add the log-likelihoods) to get the overall likelihood.

For a real example, let’s look at the phylogenetic tree of amphibians and eval-
uate the hypothesis that the tailed and New Zealand frogs, sister clade to the
rest of frogs, diversified at a slower rate than other amphibians (Figure 12.3).
We can use the phylogenetic “backbone” tree from Jetz and Pyron (Jetz and
Pyron 2018), assigning diversities based on the classification associated with
that publication. We can then calculate likelihoods based on equation 11.24.

We can calculate the likelihood of the constant rates model, with two parameters
λT and µT , to a variable rates model with four parameters λliop, µliop, λother,
and µother. For this example, we obtain the following results.

Model Parameter estimates ln-Likelihood AICc

Constant rates λT = 0.30 -1053.9 2111.8
µT = 0.28

Variable rates lambdaliop = 0.010 -1045.4 2101.1
µliop = 0.007

lambdaother = 0.29
µother = 0.27

With a difference in AICc of more than 10, we see from these results that there
is good reason to think that there is a difference in diversification rates in these
“oddball” frogs compared to the rest of the amphibians.

Of course, more elaborate comparisons are possible. For example, one could
compare the fit of four models, as follows: Model 1, constant rates; Model 2,
speciation rate in clade A differs from the background; Model 3, extinction
rate in clade A differs from the background; and Model 4, both speciation and
extinction rates in clade A differ from the background. In this case, some of
the pairs of models are nested – for example, Model 1 is a special case of Model
2, which is, in turn, a special case of Model 4 – but all four do not make a
nested series. Here we benefit from using a model selection approach based on
AICC . We can fit all four models and use their relative number of parameters
to calculate AICC scores. We can then calculate AICC weights to evaluate the
relative support for each of these four models. (As an aside, it might be difficult
to differentiate among these four possibilities without a lot of data!)

But what if you do not have an a priori reason to predict differential diversifica-
tion rates across clades? Or, what if the only reason you think one clade might
have a different diversification rate than another is that it has more species?
(Such reasoning is circular, and will wreak havoc with your analyses!) In such
cases, we can use methods that allow us to fit general models where diversifica-
tion rates are allowed to vary across clades in the tree. Available methods use
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Figure 12.3. Phylogenetic tree of amphibians with divergence times and diversi-
ties of major clades. Data from Jetz and Pyron (Jetz and Pyron 2018). Image
by the author, can be reused under a CC-BY-4.0 license.
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stepwise AIC (MEDUSA, Alfaro et al. 2009; but see May and Moore 2016),
or reversible-jump Bayesian MCMC (Rabosky 2014, 2017; but see Moore et al.
2016).

For example, running a stepwise-AIC algorithm on the amphibian data (Alfaro
et al. 2009) results in a model with 11 different speciation and extinction regimes
(Figure 12.4). This is good evidence that diversification rates have varied wildly
through the history of amphibians.

One note: all current approaches fit a model where birth and death rates change
at discrete times in the phylogenetic tree - that is, along certain branches in the
tree leading to extant taxa. One might wish for an approach, then, that models
such changes - using, for example, a Poisson process - and then locates the
changes on the tree. However, we still lack the mathematics to solve for E(t)
(e.g. equation 11.19) under such a model (Moore et al. 2016). Given that, we
can view current implementations of models where rates vary across clades as an
approximation to the likelihood, and one that discounts the possibility of shifts
in speciation and/or extinction rates among any clades that did not happen to
survive until the present day (Rabosky 2017) - and we are stuck with that until
a better alternative is developed!

Section 12.3: Variation in diversification rates through time

In addition to considering rate variation across clades, we might also wonder
whether birth and/or death rates have changed through time. For example, per-
haps we think our clade is an adaptive radiation that experienced rapid diversifi-
cation upon arrival to an island archipelago and slowed as this new adaptive zone
got filled (Schluter 2000). This hypothesis is an example of density-dependent
diversification, where diversification rate depends on the number of lineages
that are present (Rabosky 2013). Alternatively, perhaps our clade has been
experiencing extinction rates that have changed through time, perhaps peak-
ing during some time period of unfavorable climactic conditions (Benton 2009).
This is another hypothesis that predicts variation in diversification (speciation
and extinction) rates through time.

We can fit time-dependent diversification models using likelihood equations that
allow arbitrary variation in speciation and/or extinction rates, either as a func-
tion of time or depending on the number of other lineages in the clade. To
figure out the likelihood we can first make a simplifying assumption: though
diversification rates might change, they are constant across all lineages at any
particular time point. In particular, this means that speciation (and/or extinc-
tion) rates slow down (or speed up) in exactly the same way across all lineages
in an evolving clade. This is again the Equal-Rates Markov (ERM) model for
tree growth described in the previous chapter.

Our assumption about equal rates across lineages at any time means that we
can consider time-slices through the tree rather than individual branches, i.e. we
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Figure 12.4. Analysis of diversification rate shifts among amphibian clades
using MEDUSA (Alfaro et al. 2009). Arrows highlight places where speciation,
extinction, or both are inferred to have shifted; green arrows indicate an inferred
increase in r = λ − µ, while red arrows indicate decreased r. Data from Jetz
and Pyron (Jetz and Pyron 2018). Image by the author, can be reused under a
CC-BY-4.0 license.
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can get all the information that we need to fit these models from lineage through
time plots.

The most general way to fit time-varying birth-death models to phylogenetic
trees is described in Morlon et al. (2011). Consider the case where both speci-
ation and extinction rates vary as a function of time, λ(t) and µ(t). Morlon et
al. (2011) derive the likelihood for such a model as:

(eq. 12.1)

L(t1, t2, . . . , tn−1) = (n + 1)!
fn

∑n−1
i=1 λ(ti)Ψ(si,1, ti)Ψ(si,2, ti)

λ[1 − E(t1)]2

Where:

(eq. 12.2)

E(t) = 1 − e

∫ t

0
[λ(u)−µ(u)]du

1
f +

∫ t

0 e

∫ s

0
[λ(u)−µ(u)]du

λ(s)ds

and:

(eq. 12.3)

Ψ(s, t) = e

∫ t

s
[λ(u)−µ(u)]du

[
1 +

∫ t

s
e

∫ τ

0
[λ(σ)−µ(σ)]dσ

λ(τ)dτ

1
f +

∫ s

0 e

∫ τ

0
[λ(σ)−µ(σ)]dσ

λ(τ)dτ

]−2

Following chapter 11, n is the number of tips in the tree, and divergence times
t1, t2, . . . , tn−1 are defined as measured from the present (e.g. decreasing towards
the present day). λ(t) and µ(t) are speciation and extinction rates expressed
as an arbitrary function of time, f is the sampling fraction (under a uniform
sampling model). For a node starting at time ti, si,1 and si,2 are the times when
the two daughter lineages encounter a speciation event in the reconstructed
tree1. E(t), as before, is the probability that a lineage alive at time t leaves
no descendants in the sample. Finally, Ψ(s, t) is the probability that a lineage
alive at time s leaves exactly one descent at time t < s in the reconstructed tree.
These equations look complex, and they are - but basically involve integrating
the speciation and extinction functions (and their difference) along the branches
of the phylogenetic tree.

Note that my equations here differ from the originals in Morlon et al. (2011) in
two ways. First, Morlon et al. (2011) assumed that we have information about
the stem lineage and, thus, used an index on ti that goes up to n instead of
n − 1 and a different denominator conditioning on survival of the descendants
of the single stem lineage (Morlon et al. 2011). Second, I also multiply by the
total number of topological arrangements of n taxa, (n + 1)!.
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If one substitutes constants for speciation and extinction (λ(t) = λc, µ(t) = µc)
in equation 12.1, then one obtains equation 11.24; if one additionally considers
the case of complete sampling and substitutes f = 1 then we obtain equation
11.18. This provides a single unified framework for time-varying phylogenetic
trees with uniform incomplete sampling (see also Höhna 2014 for independent
but equivalent derivations that also extend to the case of representative sam-
pling).

Equation 12.1 requires that we define speciation rate as a function of time.
Two types of time-varying models are currently common in the comparative
literature: linear and expoential. If speciation rates change linearly through
time (see Rabosky and Lovette 2008 for an early version of this model):

(eq. 12.4)
λ(t) = λ0 + αλt

Where λ0 is the initial speciation rate at the present and alpha is the slope
of speciation rate change as we go back through time. αλ must be chosen so
that speciation rates do not become negative as we move back through the
tree: αλ > −λ0/t1. Note that the interpretation of αλ is a bit strange since we
measure time backwards: a positive αλ, for example, would mean that speciation
rates have declined from the past to the present. Other time-dependent models
published earlier (e.g. Rabosky and Lovette 2008, which considered a linearly
declining pure-birth model) do not have this property.

We could also consider a linear change in extinction through time:

(eq. 12.5)
µ(t) = µ0 + αµt

Again, αµ is the change in extinction rate through time, and must be interpreted
in the same “backwards” way as αλ. Again, we must restrict our parameter to
avoid a negative rate: αµ > −µ0/t1

One can then substitute either of these formulas into equation 12.1 to calculate
the likelihood of a model where speciation rate declines through time. Many
implementations of this approach use numerical approximations rather than
analytic solutions (see, e.g., Morlon et al. 2011; Etienne et al. 2012).

Another common model has speciation and/or extinction rates changing expo-
nentially through time:

(eq. 12.6)
λ(t) = λ0eβλt

and/or

(eq. 12.7)
µ(t) = µ0eβµt
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We can again calculate likelihoods for this model numerically (Morlon et al.
2011, Etienne et al. (2012)).

As an example, we can test models of time-varying diversification rates across
part of the amphibian tree of life from Jetz and Pyron (2018). I will focus
on one section of the salamanders, the lungless salamanders (Plethodontidae,
comprised of the clade that spans Bolitoglossinae, Spelerpinae, Hemidactylinae,
and Plethodontinae). This interesting clade was already identified above as
including both an increase in diversification rates (at the base of the clade) and
a decrease (on the branch leading to Hemidactylinae; Figure 12.4). The tree
I am using may be missing a few species; this section of the tree includes 440
species in Jetz and Pyron (2018) but 471 speices are listed on Amphibiaweb as
of May 2018. Thus, I will assume random sampling with f = 440/471 = 0.934.

Comparing the fit of a set of models, we obtain the following results:

Model Number of params. Param. estimates lnL AIC
CRPB 1 λ = 0.05111267 497.8 -993.6
CRBD 2 λ = 0.05111267 497.8 -991.6
SP-L µ = 0

3 λ0 = 0.035 513.0 -1019.9
αλ = 0.0011
µ = 0

SP-E 3 λ0 = 0.040 510.7 -1015.4
βλ = 0.016
µ = 0

EX-L 3 λ = 0.053 497.8 -989.6
µ0 = 0
αµ = 0.000036

EX-E 3 λ = 0.069 510.6 -1015.3
µ0 = 61.9
βµ = −111.0

Models are abbreviated as: CRPB = Constant rate pure birth; CRBD = Con-
stant rate birth-death; SP-L = Linear change in speciation; SP-E = Exponential
change in speciation; EX-L = Linear change in extinction; EX-E = Exponential
change in extinction.

The model with the lowest AIC score has a linear decline in speciation rates,
and moderate support compared to all other models. From this, we support the
inference that diversification rates among these salamanders has slowed through
time. Of course, there are other models I could have tried, such as models where
both speciation and extinction rates are changing through time, or models where
there are many more extant species of salamanders than currently recognized.
The conclusion we make is only as good as the set of models being considered,
and one should carefully consider any plausible models that are not in the

196

https://amphibiaweb.org/lists/Plethodontidae.shtml


candidate set.

Section 12.4: Diversity-dependent models

Time-dependent models in the previous section are often used as a proxy to
capture processes like key innovations or adaptive radiations (Rabosky 2014).
Many of these theories suggest that diversification rates should depend on the
number of species alive in a certain time or place, rather than time (Phillimore
and Price 2008; Etienne and Haegeman 2012; Etienne et al. 2012; Rabosky
2013; Moen and Morlon 2014). Therefore, we might want to define speciation
rate in a truly diversity dependent manner rather than using time as a proxy:

(eq. 12.8)
λ(t) = λ0(1 − Nt

K
)

Since speciation rate now depends on number of lineages rather than time, we
can’t plug this expression into our general formula (Morlon et al. 2011). In-
stead, we can use the approach outlined by Etienne et al. (2012) and Etienne
et al. (2016). This approach focuses on numerical solutions to differential equa-
tions moving forward through time in the tree. The overall idea of the approach
is similar to Morlon, but details differ; likelihoods from Etienne et al. (2012)
should be directly comparable to all the likelihoods presented in this book pro-
vided that the conditioning is the same and they are multiplied by the total
number of topological arrangements, (n + 1)!, to get a likelihood for the tree
rather than for the branching times. Etienne’s approach can also deal with
incomplete sampling under a uniform sampling model.

As an example, we can fit a basic model of diversity-dependent speciation to our
phylogenetic tree of lungless salamanders introduced above. Doing so, we find
a ML estimate of λ0 = 0.099, µ = 0, and K = 979.9, with a log-likelihood of
537.3 and an AIC of -1068.7. This is a substantial improvement over any of the
time-varying models considered above, and evidence for diversity dependence
among lungless salamanders.

Both density- and time-dependent approaches have become very popular, as
time-dependent diversification models are consistent with many ecological mod-
els of how multi-species clades might evolve through time. For example, adap-
tive radiation models based on ecological opportunity predict that, as niches
are filled and ecological opportunity “used up,” then we should see a declining
rate of diversification through time (Etienne and Haegeman 2012; Rabosky and
Hurlbert 2015). By contrast, some models predict that species create new oppor-
tunities for other species, and thus predict accelerating diversification through
time (Emerson and Kolm 2005). These are reasonable hypotheses, but there is
a statistical challenge: in each case, there is at least one conceptually different
model that predicts the exact same pattern. In the case of decelerating diversi-
fication, the predicted pattern of a lineage-through-time plot that bends down
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towards the present day can also come from a model where lineages accumulate
at a constant rate, but then are not fully sampled at the present day (Pybus
and Harvey 2000). In other words, if we are missing some living species from
our phylogenetic tree and we don’t account for that, then we would mistake a
constant-rates birth death model for a signal of slowing diversification through
time. Of course, methods that we have discussed can account for this. Some
methods can even account for the fact that the missing taxa might be non-
random, as missing taxa tend to be either rare or poorly differentiated from
their sister lineages (e.g. often younger than expected by chance; Cusimano and
Renner 2010; Brock et al. 2011). However, the actual number of species in
a clade is always quite uncertain and, in every case, must be known for the
method to work. So, an alternative explanation that is often viable is that we
are missing species in our tree, and we don’t know how many there are. Addi-
tionally, since much of the signal for these methods comes from the most recent
branching events in the tree, some “missing” nodes may simply be too shallow
for taxonomists to call these things “species.” In other words, our inferences
of diversity dependence from phylogenetic trees are strongly dependent on our
understanding of how we have sampled the relevant taxa.

Likewise, a pattern of accelerating differentiation mimics the pattern caused by
extinction. A phylogenetic tree with high but constant rates of speciation and
extinction is nearly impossible to distinguish from a tree with no extinction and
speciation rates that accelerate through time.

Both of the above caveats are certainly worth considering when interpreting
the results of tests of diversification from phylogenetic data. In many cases,
adding fossil information will allow investigators to reliably distinguish between
the stated alternatives, although methods that tie fossils and trees together
are still relatively poorly developed (but see Slater and Harmon 2013). And
many current methods will give ambiguous results when multiple models provide
equivalent explanations for the data - as we would hope!

Section 12.5: Protracted speciation

In all of the diversification models that we have considered so far, speciation
happens instantly; one moment we have a single species, and then immediately
two. But this is not biologically plausible. Speciation takes time, as evidenced
by the increasing numbers of partially distinct populations that biologists have
identified in the natural world (Coyne and Orr 2004; De Queiroz 2005). Fur-
thermore, the fact that speciation takes time can have a profound impact on
the shapes of phylogenetic trees (Losos and Adler 1995). Because of this, it is
worth considering diversification models that explicitly account for the fact that
the process of speciation has a beginning and an end.

The most successful models to tackle this question have been models of pro-
tracted speciation (Rosindell et al. 2010; Etienne and Rosindell 2012; Lambert
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et al. 2015). One way to set up such a model is to state that speciation begins
by the formation of an incipient species at some rate λ1. This represents a
“partial” species; one can imagine, for example, that this is a population that
has split off from the main range of the species, but has not yet evolved full
reproductive isolation. The incipient species only becomes a “full” species if it
completes speciation, which occurs at a rate λ2. This represents the rate at
which an incipient species evolves full species status (Figure 12.5).

Figure 12.5. An illustration of the protracted model of speciation on a phylo-
genetic tree. Panel A shows the growing tree including full (solid lines) and
incipient species (dotted lines). Incipient species become full at some rate, and
if that does not occur before sampling then they are not included in the final
species tree (panel B; e.g. lineage 4i). Redrawn from Lambert et al. (2015).
Image by the author, can be reused under a CC-BY-4.0 license.

Because speciation takes time, the main impact of this model is that we predict
fewer very young species in our tree – that is, the nodes closest to the tips of the
tree are not as young as they would be compared to pure-birth or birth-death
models without protracted speciation (Figure 12.6). As a result, protracted spe-
ciation models produce lineage through time plots that can mimic the properties
often attributed to diversity-dependence, even without any interactions among
lineages (Etienne and Rosindell 2012)!

Likelihood approaches are available for this model of protracted speciation.
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Figure 12.6. Lineage-through-time plots under a protracted birth-death model.
Redrawn from Etienne and Rosindell (2012). Image by the author, can be reused
under a CC-BY-4.0 license.
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Again, the likelihood must be calculated using numerical methods (Lambert
et al. 2015). Fitting this model to the salamander tree, we obtain a maximum
log-likeihood of 513.8 with parameter values λ1 = 0.059, λ2 = 0.44, and µ = 0.0.
This corresponds to an AIC score of -1021.6; this model fits about as well as the
best of the time-varying models but not as well as the diversity dependent model
considered above. Again, though, I am not including plausible combinations of
models, such as protracted speciation that varies through time.

So far, models of protracted speciation remain mostly in the realm of ecological
neutral theory, and are just beginning to move into phylogenetics and evolution-
ary biology (see, e.g., Sukumaran and Lacey Knowles 2017). However, I think
models that treat speciation as a process that takes time – rather than some-
thing instantaneous – will be an important addition to our macroevolutionary
toolbox in the future.

Section 12.5: Summary

In this chapter I discussed models that go beyond constant rate birth-death
models. We can fit models where speciation rate varies across clades or through
time (or both). In some cases, very different models predict the same pattern
in phylogenetic trees, warranting some caution until direct fossil data can be in-
corporated. I also described a model of protracted speciation, where speciation
takes some time to complete. This latter model is potentially better connected
to microevolutionary models of speciation, and could point towards fruitful di-
rections for the field. We know that simple birth-death models do not capture
the richness of speciation and extinction across the tree of life, so these models
that range beyond birth and death are critical to the growth of comparative
methods.

Footnotes

1: Even though this approach requires topology, Morlon et al. (2011) show that
their likelihood is equivalent to other approaches, such as Nee and Maddison,
that rely only on branching times and ignore topology completely. This is
because trees with the same set of branching times but different topologies have
identical likelihoods under this model.
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Chapter 13: Characters and diversification rates

Section 13.1: The evolution of self-incompatibility

Most people have not spent a lot of time thinking about the sex lives of plants.
The classic mode of sexual reproduction in angiosperms (flowering plants) in-
volves pollen (the male gametophyte stage of the plant life cycle). Pollen lands
on the pistil (the female reproductive structure) and produces a pollen tube.
Sperm cells move down the pollen tube, and one sperm cell unites with the egg
to form a new zygote in the ovule.

As you might imagine, plants have little control over what pollen grains land
on their pistil (although plant species do have some remarkable adaptations to
control pollination by animals; see Anders Nilsson 1992). In particular, this
“standard” mode of reproduction leaves open the possibility of self-pollination,
where pollen from a plant fertilizes eggs from the same plant (Stebbins 1950).
Self-fertilization (sometimes called selfing) is a form of asexual reproduction,
but one that involves meiosis; as such, there are costs to self-fertilization. The
main cost is inbreeding depression, a reduction in offspring fitness associated
with recessive deleterious alleles across the genome (Holsinger et al. 1984).

Some species of angiosperms can avoid self-fertilization through self-
incompatibility (Bateman 1952). In plants with self-incompatibility, the
process by which the sperm meets the egg is interrupted at some stage if
pollen grains have a genotype that is the same as the parent (e.g. Schopfer et
al. 1999). This prevents selfing – and also prevents sexual reproduction with
plants that have the same genotype(s) at loci involved in the process.

Species of angiosperms are about evenly divided between these two states of
self-compatibility and self-incompatibility (Igic and Kohn 2006). Furthermore,
self-incompatible species are scattered throughout the phylogenetic tree of an-
giosperms (Igic and Kohn 2006).

The evolution of selfing is a good example of a trait that might have a strong
effect on diversification rates by altering speciation, extinction, or both. One
can easily imagine, for example, how incompatibility loci might facilitate the
evolution of reproductive isolation among populations, and how lineages with
such loci might diversify at a very different tempo than those without (Goldberg
et al. 2010).

In this chapter, we will learn about a family of models where traits can affect
diversification rates. I will also address some of the controversial aspects of
these models and how we can improve these approaches in the future.
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Section 13.2: A State-Dependent Model of Diversification

The models that we will consider in this chapter include trait evolution and
associated lineage diversification. In the simplest case, we can consider a model
where the character has two states, 0 and 1, and diversification rates depend on
those states.

We need to model the transitions among these states, which we can do in an
identical way to what we did in Chapter 7 using a continuous-time Markov
model. We express this model using two rate parameters, a forward rate q01
and a backwards rate q10.

We now consider the idea that diversification rates might depend on the char-
acter state. We assume that species with character state 0 have a certain speci-
ation rate (λ0) and extinction rate (µ0), and that species in 1 have potentially
different rates of both speciation (λ1) and extinction (µ1). That is, when the
character evolves, it affects the rate of speciation and/or extinction of the lin-
eages. Thus, we have a six-parameter model (Maddison et al. 2007). We assume
that parent lineages give birth to daughters with the same character state, that
is that character states do not change at speciation.

It is straightforward to simulate evolution under our state-dependent model of
diversification. We proceed in the same way as we did for birth-death models, by
drawing waiting times, but these waiting times can be waiting times to the next
character state change, speciation, or extinction event. In particular, imagine
that there are n lineages present at time t, and that k of these lineages are in
state 0 (and n−k are in state 1). The waiting time to the next event will follow
an exponential distribution with a rate parameter of:

(eq. 13.1)
ρ = k(q01 + λ0 + µ0) + (n − k)(q10 + λ1 + µ1)

This equation says that the total rate of events is the sum of the events that
can happen to lineages with state 0 (state change to 1, speciation, or extinction)
and the analogous events that can happen to lineages with state 1. Once we
have a waiting time, we can assign an event type depending on probabilities.
For example, the probability that the event is a character state change from 0
to 1 is:

(eq. 13.2)
pq01 = (n · q01)/ρ

And the probability that the event is the extinction of a lineage with character
state 1 is:

(eq. 13.3)
pµ1 = [(n − k) · µ1]/ρ

And so on for the other four possible events.
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Once we have picked an event in this way, we can randomly assign it to one
of the lineages in the appropriate state, with each lineage equally likely to be
chosen. We then proceed forwards in time until we have a dataset with the
desired size or total time depth.

An example simulation is shown in Figure 13.1. As you can see, under these
model parameters the impact of character states on diversification is readily
apparent. In the next section we will figure out how to extract that information
from our data.

Section 13.3: Calculating Likelihoods for State-dependent
diversification models

To calculate likelihoods for state-dependent diversification models we use a prun-
ing algorithm with calculations that progress back through the tree from the
tips to the root. We will follow the description of this algorithm in Maddison
et al. (2007). We have already used this approach to derive likelihoods for
constant rate birth-death models on trees (Chapter 12), and this derivation is
similar.

We consider a phylogenetic tree with data on the character states at the tips.
For the purposes of this example, we will assume that the tree is complete and
correct – we are not missing any species, and there is no phylogenetic uncertainty.
We will come back to these two assumptions later in the chapter.

We need to obtain the probability of obtaining the data given the model (the
likelihood). As we have seen before, we will calculate that likelihood going
backwards in time using a pruning algorithm (Maddison et al. 2007). The key
principle, again, is that if we know the probabilities at some point in time on
the tree, we can calculate those probabilities at some time point immediately
before. By applying this method successively, we can move back towards the
root of the tree. We move backwards along each branch in the tree, merging
these calculations at nodes. When we get to the root, we have the probability
of the data given the model and the entire tree – that is, we have the likelihood.

The other essential piece is that we have a starting point. When we start at the
tips of the tree, we assume that our character states are fixed and known. We
use the fact that we know all of the species and their character states at the
present day as our starting point, and move backwards from there (Maddison
et al. 2007). For example, for a species with character state 0, the likelihood
for state 0 is 1, and for state 1 is zero. In other words, at the tips of the tree
we can start our calculations with a probability of 1 for the state that matches
the tip state, and 0 otherwise.

This discussion also highlights the fact that incorporating uncertainty and/or
variation in tip states for these algorithms is not computationally difficult – we
just need to start from a different point at the tips. For example, if we are
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Figure 13.1. Simulation of character-dependent diversification. Data were simu-
lated under a model where diversification rate of state zero (red) is substantially
lower than that of state 1 (black; model parameters q01 = 110 = 0.05, λ0 = 0.2,
λ1 = 0.8, µ0 = µ1 = 0.05). Image by the author, can be reused under a
CC-BY-4.0 license.
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completely unsure about the tip state for a certain taxa, we can begin with
likelihoods of 0.5 for starting in state 0 and 0.5 for starting in state 1. How-
ever, such calculations are not commonly implemented in comparative methods
software.

We now need to consider the change in the likelihood as we step backwards
through time in the tree (Maddison et al. 2007). We will consider some very
small time interval ∆t, and later use differential equations to find out what
happens in the limit as this interval goes to zero (Figure 13.2). Since we will
eventually take the limit as ∆t → 0, we can assume that the time interval is
so small that, at most, one event (speciation, extinction, or character change)
has happened in that interval, but never more than one. We will calculate the
probability of the observed data given that the character is in each state at time
t, again measuring time backwards from the present day. In other words, we
are considering the probability of the observed data if, at time t, the character
state were in state 0 [p0(t)] or state 1 [p1(t)]. For now, we can assume we know
these probabilities, and try to calculate updated probabilities at some earlier
time t + ∆t: p0(t + ∆t) and p1(t + ∆t).

To calculate p0(t + ∆t) and p1(t + ∆t), we consider all of the possible things
that could happen in a time interval ∆t along a branch in a phylogenetic tree
that are compatible with our dataset (Figure 13.2; Maddison et al. 2007). First,
nothing at all could have happened; second, our character state could have
changed; and third, there could have been a speciation event. This last event
might seem incorrect, as we are only considering changes along branches in the
tree and not at nodes. If we did not reconstruct any speciation events at some
point along a branch, then how could one have taken place? The answer is that
a speciation event could have occurred but all taxa descended from that branch
have since gone extinct. We must also consider the possibility that either the
right or the left lineage went extinct following the speciation event; that is why
the speciation event probabilities appear twice in Figure 13.2 (Maddison et al.
2007).

We can write an equation for these updated probabilities. We will consider the
probability that the character is in state 0 at time t + ∆t; the equation for state
1 is similar (Maddison et al. 2007).

(eq. 13.4)

p0(t + ∆t) = (1 − µ0)∆t · [(1 − q01∆t)(1 − λ0∆t)p0(t) + q01∆t(1 − λ0∆t)
p1(t) + 2 · (1 − q01∆t)λ0∆t · E0(t)p0(t)]

We can multiply through and simplify. We will also drop any terms that include
[∆t]2, which become vanishingly small as ∆t decreases. Doing that, we obtain
(Maddison et al. 2007):

(eq. 13.5)

p0(t + ∆t) = [1 − (λ0 + 0 + q01)∆t]p0(t) + (q01∆t)p1(t) + 2(λ0∆t)E0(t)p0(t)
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Figure 13.2. Illustration of calculations of probabilities of part of the data
descended from node N (red) moving along a branch in the tree. Starting with
values for the probability at time t, we calculate the probability at time t + ∆t,
moving towards the root of the tree. Redrawn from Maddison et al. (2007).
Image by the author, can be reused under a CC-BY-4.0 license.
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Figure 13.3. The four scenarios under which a lineage with state 0 at time
t + ∆t can yield the data descended from node N. Redrawn from Maddison et
al. (2007). Image by the author, can be reused under a CC-BY-4.0 license.
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Similarly,

(eq. 13.6)

p1(t + ∆t) = [1 − (λ1 + 1 + q10)∆t]p1(t) + (q10∆t)p0(t) + 2(λ1∆t)E1(t)p1(t)

We can then find the instantaneous rate of change for these two equations by
solving for p1(t + ∆t)/[∆t], then taking the limit as ∆t → 0. This gives (Mad-
dison et al. 2007):

(eq. 13.7)

dp0

dt
= −(λ0 + µ0 + q01)p0(t) + q01p1(t) + 2λ0E0(t)p0(t)

and:

(eq. 13.8)

dp1

dt
= −(λ1 + µ1 + q10)p1(t) + q10p1(t) + 2λ1E1(t)p1(t)

We also need to consider E0(t) and E1(t). These represent the probability that
a lineage with state 0 or 1, respectively, and alive at time t will go extinct before
the present day. Neglecting the derivation of these formulas, which can be found
in Maddison et al. (2007) and is closely related to similar terms in Chapters 11
and 12, we have:

(eq. 13.9)

dE0

dt
= µ0 − (λ0 + µ0 + q01)E0(t) + q01E1(t) + λ0[E0(t)]2

and:

(eq. 13.10)

dE1

dt
= µ1 − (λ1 + µ1 + q10)E1(t) + q10E0(t) + λ1[E1(t)]2

Along a single branch in a tree, we can sum together many such small time
intervals. But what happens when we get to a node? Well, if we consider the
time interval that contains the node, then we already know what happened –
a speciation event. We also know that the two daughters immediately after
the speciation event were identical in their traits (this is an assumption of the
model). So we can calculate the likelihood for their ancestor for each state as
the product of the likelihoods of the two daughter branches coming into that
node and the speciation rate (Maddison et al. 2007). In this way, we merge our
likelihood calculations along each branch when we get to nodes in the tree.
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When we get to the root of the tree, we are almost done – but not quite! We
have partial likelihood calculations for each character state – so we know, for
example, the likelihood of the data if we had started with a root state of 0, and
also if we had started at 1. To merge these we need to use probabilities of each
character state at the root of the tree (Maddison et al. 2007). For example, if
we do not know the root state from any outside information, we might consider
root probabilities for each state to be equal, 0.5 for state 0 and 0.5 for state
1. We then multiply the likelihood associated with each state with the root
probability for that state. Finally, we add these likelihoods together to obtain
the full likelihood of the data given the model.

The question of which root probabilities to use for this calculation has been
discussed in the literature, and does matter in some applications. Aside from
equal probabilities of each state, other options include using outside information
to inform prior probabilities on each state (e.g. Hagey et al. 2017), finding the
calculated equilibrium frequency of each state under the model (Maddison et
al. 2007), or weighting each root state by its likelihood of generating the data,
effectively treating the root as a nuisance parameter (FitzJohn et al. 2009).

I have described the situation where we have two character states, but this
method generalizes well to multi-state characters (the MuSSE method; FitzJohn
2012). We can describe the evolution of the character in the same way as
described for multi-state discrete characters in chapter 9. We then can as-
sign unique diversification rate parameters to each of the k character states:
λ0, λ1, . . . , λk and µ0, µ1, . . . , µk (FitzJohn 2012). It is worth keeping in mind,
though, that it is not too hard to construct a model where parameters are not
identifiable and model fitting and estimation become very difficult.

Section 13.4: ML and Bayesian Tests for State-Dependent
Diversification

Now that we can calculate the likelihood for state-dependent diversification
models, formulating ML and Bayesian tests follows the same pattern we have
encountered before. For ML, some comparisons are nested and so you can
use likelihood ratio tests. For example, we can compare the full BiSSe model
(Maddison et al. 2007), with parameters q01, q10, λ0, λ1, µ0, µ1 with a restricted
model with parameters q01, q10, λall, µall. Since the restricted model is a special
case of the full model where λ0 = λ1 = λall and µ0 = µ1 = µall, we can
compare the two using a likelihood ratio test, as described earlier in the book.
Alternatively, we can compare a series of BiSSe-type models by comparing their
AICc scores.

For example, I will apply this approach to the example of self-incompitability.
I will use data from Goldberg and Igic (2012), who provide a phylogenetic tree
and data for 356 species of Solanaceae. All species were classified as having
any form of self incompatibility, even if the state is variable among populations.
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The data, along with a stochastic character map of state changes, are shown in
Figure 13.4.

Figure 13.4. Data from Goldberg and Igic (2012) showing presence (red) and
absence (black) of self-incomatibility among Solanaceae. Branches colored using
stochastic character mapping under a model with distinct forwards and back-
wards rates; these reconstructions are biased if characters affect diversification
rates. Image by the author, can be reused under a CC-BY-4.0 license.

Applying the BiSSe models to these data and assuming that q01 ̸= q10, we obtain
the following results:
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Model

Number
of
parameters

Parameter
estimates lnL AIC

Character-
independent
model

4 λ = 0.65,
µ = 0.57

-945.96 1899.9

q01 = 0.16,
q10 = 0.09

Speciation rate
depends on
character

5 µ = 0.57 -945.57 1901.1

λ0 = 0.69,
λ1 = 0.63
q01 = 0.17,
q10 = 0.08

Extinction rate
depends on
character

5 λ = 0.65 -943.93 1897.9

µ0 = 0.45,
µ1 = 0.67
q01 = 0.22,
q10 = 0.06

Full character-
dependent
model

6 λ0 = 0.49,
λ1 = 0.79

-941.94 1895.9

µ0 = 0.20,
µ1 = 0.84
q01 = 0.29,
q10 = 0.05

From this, we conclude that models where the character influences diversification
fit best, with the full model receiving the most support. We can’t discount the
possibility that the character only influences extinction and not speciation, since
that model is within 2 AIC units of the best model.

Alternatively, we can carry out a Bayesian test for state-dependent diversifi-
cation. Like other models in the book, this requires setting up an MCMC
algorithm that samples the posterior distributions of our model parameters
(FitzJohn 2012). In this case:

1. Sample a set of starting parameter values, q01, q10, λ0, λ1, µ0, µ1, from their
prior distributions. For example, one could set prior distribution for all
parameters as exponential with a mean and variance of λpriori

(note that,
as usual, the choice for this parameter should depend on the units of
tree branch lengths you are using). We then select starting values for all
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parameters from the prior.
2. Given the current parameter values, select new proposed parameter values

using the proposal density Q(p′|p). For all parameter values, we can use a
uniform proposal density with width wp, so that Q(p′|p) U(p − wp/2, p +
wp/2). We can either choose all parameter values simultaneously, or one
at a time (the latter is typically more effective).

3. Calculate three ratios:
• The prior odds ratio. This is the ratio of the probability of drawing

the parameter values p and p′ from the prior. Since we have expo-
nential priors for all parameters, we can calculate this ratio as (eq.
13.11):

Rprior = λpriori
e−λpriori

p′

λpriori
e−λpriori

p
= eλpriori

(p−p′)

• The proposal density ratio. This is the ratio of probability of pro-
posals going from p to p′ and the reverse. We have already de-
clared a symmetrical proposal density, so that Q(p′|p) = Q(p|p′)
and Rproposal = 1.

• The likelihood ratio. This is the ratio of probabilities of the data
given the two different parameter values. We can calculate these
probabilities from the approach described in the previous section.

4. Find Raccept as the product of the prior odds, proposal density ratio, and
the likelihood ratio. In this case, the proposal density ratio is 1, so (eq.
13.12):

Raccept = Rprior · Rlikelihood

5. Draw a random number u from a uniform distribution between 0 and 1.
If u < Raccept, accept the proposed value of the parameter(s); otherwise
reject, and retain the current value of the two parameters.

6. Repeat steps 2-5 a large number of times.

Applying this method to the self-incompatability data, we find that again esti-
mates of speciation and extinction differ substantially among the two character
states (Figure 13.5). Since the posterior distributions for extinction do not
overlap, we again infer that the character likely influences that model param-
eter; speciation results are again suggestive but not as conclusive as those for
extinction.

Section 13.5: Potential Pitfalls and How to Avoid Them

Recently, a few papers have been published that are critical of state-dependent
diversification models (Rabosky and Goldberg 2015, Maddison and FitzJohn
(2015)). These papers raise substantive critiques that are important to address
when applying the methods described in this chapter to empirical data. In this
section I will attempt to describe the critiques and their potential remedies.
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Figure 13.5. Bayesian BiSSe analysis of self-incompatibility. Posterior distri-
butions for character-dependent speciation (λ0 and λ1) and extinction (µ0 and
µ1). Image by the author, can be reused under a CC-BY-4.0 license.
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The most serious limitation of state-dependent models as currently implemented
is that they consider only a relatively small set of possible models. In particular,
the approach we describe above compares two models: first, a model where birth
and death rates are constant and do not depend on the state of the character;
and second, a model where birth and death rates depend only on the character
state (Maddison et al. 2007). But there is another possibility that might be (in
general) more common than either of the models we consider: birth and death
rates vary, but in a way that is not dependent on the particular character we
have chosen to analyze. I say that this is probably a common pattern because
we know that birth and death rates vary tremendously across lineages in the
tree of life (Alfaro et al. 2009), and it seems probable to me that many of our
hypotheses about which characters might contribute to that variation are, at
this point, stabs in the dark.

This issue is a normal one for statistical analyses – after all, there are always
other models outside of our set of considered possibilities. However, in this case,
the fact that state-dependent diversification models fail to consider the possi-
bility outlined above causes a very particular – and peculiar – problem: if we
apply the tests to empirical phylogenetic trees, even with made-up data, we al-
most always find statistically significant results (Rabosky and Goldberg 2015).
For example, Rabosky and Goldberg (2015) found that there is very often a
statistically significant “signal” that the number of letters in a species name is
significantly associated with speciation rates across a range of empirical datasets.
This result might seem ridiculous and puzzling, as there is no way that species
name length should be associated with the diversification processes. However, if
we return to our alternative model above, then the results make sense. Rabosky
and Goldberg (2015) simulated character evolution on real phylogenetic trees,
and their results do not hold when the trees are simulated along with the char-
acters (this is also why Rabosky and Goldberg’s (2015) results do not represent
“type I errors,” contra their paper, because the data are not simulated under
the null hypothesis). On these real trees, speciation and/or extinction rates
vary across clades. Among the two models that the authors consider, both are
wrong; speciation and extinction are independent of the character but not con-
stant through time. Of the two alternatives, the state-dependent model tends
to fit better because, from a statistical point of view, it is important for the
model to capture some variation in birth and death rates across clades. Even
a random character will pick up some of this variation, so that the alternative
model tends to fit better than the null – even though, in this case, the character
has nothing to do with diversification!

Fortunately, there are a number of ways to deal with this problem. First, one
can compare the statistical support for the state-dependent model with the sup-
port that one obtains for random data. The random data could be simulated
on the tree, or one could permute the tips or draw random data from a multi-
nomial distribution (Rabosky and Goldberg 2015). One can then compare, for
example, the distribution of ∆AICc scores obtained from these permutations to
the ∆AICc for the original data. There are also semi-parametric methods based
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on permutations that have similar statistical properties (Rabosky and Goldberg
2017). Alternatively, we could explicitly consider the possibility that some un-
measured character is actually the thing that is influencing diversification rates
(Beaulieu and O’Meara 2016). This latter approach is the most elegant as we
can directly add the model described in this section to our list of candidates
(see Beaulieu and O’Meara 2016).

A more general critique of state-dependent models of diversification was raised
by Maddison and Fitzjohn (Maddison and FitzJohn 2015). This paper pointed
out that statistically significant results for these tests can be driven by an event
on a single branch of a tree, and therefore be unreplicated. This is a good
criticism that applies equally well to a range of comparative methods. We can
deal with this critique, in part, by making sure the events we test are replicated
in our data. Together, both of these critiques argue for a stronger set of model
adequacy approaches in comparative methods.

Section 13.6: Summary

Many evolutionary models postulate a link between species characteristics and
speciation, extinction, or both. These hypotheses can be tested using state-
dependent diversification models, which explicitly consider the possibility that
species’ characters affect their diversification rates. State-dependent models as
currently implemented have some potential problems, but there are methods
to deal with these critiques. The overall ability of state-dependent models to
explain broad patterns of evolutionary change remains to be determined, but
represents a promising avenue for future research.
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Chapter 14: What have we learned from the
trees?

Section 14.1: The Lorax

In Dr. Seuss’s “The Lorax” there is a quote that seems appropriate to begin my
final chapter (Seuss 1971).

‘Mister,’ he said with a sawdusty sneeze,
‘I am the Lorax, I speak for the trees.
I speak for the trees, for the trees have no tongues.”

Comparative methods have been rushing forward at breakneck speed to “speak
for the trees” for more than 20 years now. At the same time, we have gained
more information about the shape of the tree of life than any time in the history
of the planet. So, what have we learned so far? And what can we learn moving
forward? Perhaps most importantly, how can we overcome the perceived and
actual limits of comparative approaches, and enable new breakthroughs in our
understanding of evolutionary biology?

Section 14.2: What we have learned so far

The great success of comparative methods has been, I think, in testing hypothe-
ses about adaptation. A variety of methods can be applied to test for evolu-
tionary relationships between form and the environment – and, increasingly,
organismal function. These methods applied to real data have shed great light
onto the myriad ways that species can adapt. This has been a great boon to
organismal biology, and comparative methods are now routinely used to analyze
and test hypotheses of adaptation across the tree of life. Methods for detecting
adaptation using comparative approaches are growing increasingly sophisticated
in terms of the types of data that they can handle, including massively multi-
variate gene expression data, function-valued trait data, and data from genome
sequencing. One can only expect this trend to continue.

One thing seems certain after a few decades of comparative analysis: the tempo
of evolution is incredibly variable. Rates of evolution vary both through time
and across clades, with the quickest rates of both trait evolution and speciation
thousands of times faster than the slowest rates. We can see this variation
in analyses from relatively simple tree balance tests to sophisticated Bayesian
analyses. So, evolution does not tick along like a clock; instead, rates of evolution
depend strongly on lineage, time, and place. The details of these relationships,
though, remain to be deciphered.

Comparative methods have played a critical role in our understanding of specia-
tion. Studies using lineage-through-time plots have greatly enhanced our knowl-
edge of diversification rates, and a wide range of results have shown increasing
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evidence for diversity-dependence in speciation (though this interpretation is
not without controversy!). This set of studies provide a nice complement to
paleobiological studies of diversification rates using the fossil record.

We can already gain some new biological insights as comparisons among clades
start to hint at which factors are responsible for the fact that some species are so
much more diverse than others. Perhaps for psychological reasons, most studies
have tried to determine explanations for the fastest rates of speciation, as seen in
young diverse clades like African cichlids and Andean plants. However, given the
high potential for speciation and splitting to accumulate species in a geographic
landscape, it might be true that the depauperate clades are really the mysterious
parts of the tree of life. Many current research programs are aimed directly at
explaining differences in diversity across both narrow and broad phylogenetic
scales.

Overall, I think it is easy to see why comparative methods have risen to their
current prominence in evolutionary biology. Phylogenetic trees provide a natural
way to test evolutionary hypotheses over relatively long time scales without
requiring any direct historical information. They have been applied across the
tree of life to help scientists understand how species adapt and multiply over
long time scales.

Section 14.3: Where can we go next?

As emphasized by Harvey and Pagel (1991), comparative methods have proven
to be an essential tool in identifying and describing adaptations. However, the
scope of comparative methods has broadened, and now seeks to address long-
standing theories of macroevolution. It is in this area that I think comparative
methods has promise, but awaits new developments and ideas to really make
progress towards the future.

The main challenge, I think, is in identifying and testing broad theories of
macroevolution. Too many papers focus on “classic” verbal models of macroevo-
lution – many of which have been defined in contradictory ways over the years
and can never really be tested. At the same time, new quantitative theories of
macroevolution are lacking.

Let me explore this in a bit more detail using the idea of adaptive radiation
and the related concept of ecological opportunity. Perhaps, the theory goes,
occasionally lineages enter a new adaptive zone full of niches just waiting to
be occupied; the lineage then evolves rapidly to fill those niches. Based on
this definition, there are several sets of criteria that one might apply to decide
whether or not a particular lineage has experienced such an adaptive radiation.
There are a few alternatives that are sometimes contrasted to this pattern, like
nonadaptive radiation.

The concept of adaptive radiation has been very fruitful for inspiring creative
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and interesting work on model clades, but (in my opinion) we have mostly failed
in terms of really predicting adaptive radiations and separating the phenomenon
from ‘normal’ evolution. For example, most studies identify lineages undergo-
ing adaptive radiation a priori. Even when the goal is to identify adaptive
radiations, some criteria seem hard to pin down; for example, one can require
evidence of adaptation, but surely every lineage on the planet has experienced
selection and adapted in at least some way over its history. Likewise, we can
require common descent, but there is only one tree of life on Earth (that we
know!), so eventually one will find that as well. And authors differ dramatically
on whether or not adaptive radiations need to be rapid relative to trait evolution
and/or lineage diversification in other lineages. Finally, although a few studies
have been able to characterize the unique features of adaptive radiations com-
pared to their close relatives, comparisons across broader sections of the tree of
life have mostly failed. We still do not know for certain if there is anything that
links the “classic” adaptive radiations (e.g. anoles, Darwin’s finches, mammals)
and distinguishes them from evolution in normal clades.

Comparative methods have cast doubt on another cornerstone of macroevolu-
tion, that of punctuated equilibrium. As we have argued, comparative methods
have had varying success in tackling each of the parts of PE theory, but we can
see little evidence to link them into a cohesive whole. For one thing, there is too
much evidence that lineages adapt and evolve along branches of phylogenetic
trees, rather than just at speciation. Quantitative tests do tend to find some
statistical support for the idea that change depends on both anagenesis and
speciation, but “pure” punctuated equilibrium is increasingly hard to defend.

As for other major macroevolutionary theories, some have received mixed
support (e.g. Dollo’s law, escape-and-radiation, cospeciation, key innovations),
while others have hardly been tested in a comparative framework, probably due
to a lack of methods (the geographic mosaic theory, holey adaptive landscapes).

Section 14.4: A hint at the future of comparative methods

It is perilous to predict the future progress of science. Nonetheless, I will offer
a few suggestions that I think might be productive avenues for work in compar-
ative methods.

First, I think comparative methods can and should do a better job of integrating
diverse data into a coherent framework. For example, despite clear connections,
neither fossils nor contemporary data on the tempo and genetics of speciation
typically can be integrated with phylogenetic studies of diversification (Rabosky
and Matute 2013). Research projects with the same goal, like estimating when
and why a lineage undergoes speciation, are better integrated than separate.
There are a few hints about how to proceed: first, speciation models that we
fit to both phylogenetic and fossil data must be better connected to the process
of speciation; and second, analyses need to consider both paleontological and
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phylogenetic data simultaneously.

Second, it is absolutely essential to fully deal with uncertainty through entire
pipelines of comparative analysis, from tree building to model fitting. The easi-
est way to do this is through a single integrated Bayesian framework, although
using each step’s posterior as a prior is nearly as good. Even if one is not
a Bayesian, I think it is critical to test how tree uncertainty might affect the
results of our comparative analyses.

Third, comparative methods require a more diverse set of models that are better
linked to biological processes. Current models like Brownian motion and OU
have, at best, a weak and many-to-one connection to microevolutionary models.
Other models are even more abstract; nothing we can measure about an evolving
lineage from one generation to the next, for example, can inform us about the
meaning of the lambda parameter from a PGLS analysis. This can be fine
statistically, but I think we can do better. The easiest connections to make are
between comparative methods and quantitative genetics. In this book I explore
only the most basic aspects of this connection. More could, and should, be done.
For example, no trait models that I know of deal with differences in abundance
and range size among species, even though these vary tremendously among even
very close relatives and are almost certain to affect the tempo and mode of trait
evolution. Here we can look to other fields like ecology for inspiration.

Section 14.5: Summary

Comparative methods occupy a central place in evolutionary biology. This is
because phylogenies provide an accounting of the historical patterns of evolution
and, in turn, give us a natural way to measure long-term evolutionary dynamics.
The first phase of comparative methods was focused strongly on adaptation. As
discussed in this book, we have now branched out into a wide number of new
areas, including diversification, community ecology, quantitative genetics, and
more. This expansion has involved new statistical approaches that increase the
flexibility of comparative methods and their connection to biological processes.
I expect this trend to continue, fueled by the creativity and energy of the next
crop of young scientists.
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