
Chapter 9: Beyond the Mk Model

Section 9.1: The Evolution of Frog Life History Strategies

Frog reproduction is one of the most bizarrely interesting topics in all of biology.
Across the nearly 6,000 species of living frogs, one can observe a bewildering
variety of reproductive strategies and modes (Zamudio et al. 2016). As children,
we learn of the “classic” frog life history strategy: the female lays jellied eggs
in water, which hatch into tadpoles, then later metamorphose into their adult
form [e.g. Rey (2007); Figure 9.1A]. But this is really just the tip of the frog
reproduction iceberg. Many species have direct development, where the tadpole
stage is skipped and tiny froglets hatch from eggs. There are foam-nesting
frogs, which hang their eggs from leaves in foamy sacs over streams; when the
eggs hatch, they drop into the water [e.g. Fukuyama (1991); Figure 9.1B].
Male midwife toads carry fertilized eggs on their backs until they are ready
to hatch, at which point they wade into water and their tadpoles wriggle free
[Marquez and Verrell (1991); Figure 9.1C]. Perhaps most bizarre of all are the
gastric-brooding frogs, now thought to be extinct. In this species, female frogs
swallow their fertilized eggs, which hatch and undergo early development in their
mother’s stomach (Tyler and Carter 1981). The young were then regurgitated
to start their independent lives.

The great diversity of frog reproductive modes brings up several key questions
that can potentially be addressed via comparative methods. How rapidly do
these different types of reproductive modes evolve? Do they evolve more than
once on the tree? Were “ancient” frogs more flexible in their reproductive
mode than more recent species? Do some clades of frog show more flexibility in
reproductive mode than others?

Many of the key questions stated above do not fall neatly into the Mk or
extended-Mk framework presented in the previous characters. In this chapter,
I will review approaches that elaborate on this framework and allow scientists
to address a broader range of questions about the evolution of discrete traits.

To explore these questions, I will refer to a dataset of frog reproductive modes
from Gomez-Mestre et al. (2012), specifically data classifying species as those
that lay eggs in water, lay eggs on land without direct development (terrestrial),
and species with direct development (Figure 9.2).

Section 9.2: Beyond the Mk model

In Chapter 8, we considered the evolution of discrete characters on phylogenetic
trees. These models fall under the general category of continuous-time Markov
models, which consider a process that can occupy two or more states. Tran-
sitions occur between those states in continuous time. The Markov property
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Figure 9.1. Examples of frog reproductive modes. (A) European common frogs
lay jellied eggs in water, which hatch as tadpoles and metamorphose; (B) Mal-
abar gliding frogs make nests that, supported by foam created during amplexus,
hang from leaves and branches; (C) Male midwife toads carry fertilized eggs on
their back. Photo credits: A: Thomas Brown / Wikimedia Commons / CC-BY-
2.0, B: Vikram Gupchup / Wikimedia Commons / CC-BY-SA-4.0 C: Christian
Fischer / Wikimedia Commons / CC-BY-SA-3.0
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Figure 9.2. Ancestral state reconstruction of frog reproductive modes. Data
from Gomez-Mestre et al. (2012). Image by the author, can be reused under a
CC-BY-4.0 license.
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means that, at some time t, what happens next in the model depends only on
the current state of the process and not on anything that came before.

In evolutionary biology, the most detailed work on continuous time Markov
models has focused on DNA or protein sequence data. As mentioned earlier,
an extremely large set of models are available for modeling and analyzing these
molecular sequences. One can also elaborate on these models by adding rate
heterogeneity across sites (e.g. the gamma parameter, as in GTR + Γ), or other
complications related to mechanisms of sequence evolution (for a review, see Liò
and Goldman 1998).

However, there are two important differences between models of sequence evolu-
tion and models of character change on trees that make our task distinct from
the task of modeling DNA or amino acid sequences. First, when analyzing
molecular sequences, one typically has data for many thousands (or millions) of
characters. Data sets for other characters – like the phenotypic characters of
species – are typically much smaller (and harder to collect). Second, sequence
analysis very often assumes that each character evolves independently from all
other characters, but that all characters (or at least certain large subsets of
those characters) evolve under a shared model (Liò and Goldman 1998; Yang
2006). This means that, for example, the frequency of transitions between A
and C at one location in a gene sequence contribute information about the same
transition in a different location in the sequence.

Unfortunately, when analyzing morphological character evolution, we are often
interested in single characters, and the use of shared models across characters
seems impossible to justify. There is usually no equivalence between different
character states for different characters: an A is an A for sequences, but a “1”
in a character matrix usually corresponds to the presence of two completely
different characters. The consequence of this difference is reflected in the statis-
tical property of multivariate data. For gene sequence problems, adding more
data in the form of additional characters (sites) makes model-fitting easier, as
each site adds information about the overall (shared) model across sites. With
character data, additional characters do not make the problem any easier, be-
cause each character comes with its own model parameters. In fact, we will
see that when considering character correlations using a generalized Mk model,
adding characters actually makes the problem more and more difficult. Perhaps
these issues partially explain the slow pace of model development for fitting dis-
crete characters to trees. There are a few potential solutions, such as threshold
models [Felsenstein (2005); Felsenstein (2012); discussed below]. More work is
desperately needed in this area.

In this chapter, we will first discuss extensions of Mk models that allow us to add
complexity to this simple model. We also discuss threshold models, a relatively
new approach in comparative methods that is distinct from Mk models and has
some potential for future development.
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Section 9.3: Pagel’s λ, δ, and κ (lambda, delta, and kappa)

The three Pagel models discussed in chapter 6 (Pagel 1999a,b) can also be ap-
plied to discrete characters. We do not create a phylogenetic variance-covariance
matrix for species under an Mk model, so these three models can, in this case,
only be interpreted in terms of transformations of the tree’s branch lengths.
However, the meaning of each parameter is the same as in the continuous case:
λ scales the tree from its original form to a “star” phylogeny, and thus quantifies
whether the data fits a tree-based model or one where all species are indepen-
dent; δ captures changes in the rate of trait evolution through time; and κ scales
branch lengths between their original values and one, and mimics a speciational
model of evolution (but only if all species are sampled and there has been no
extinction).

Just as with discrete characters, the three Pagel models can be evaluated in
either an ML / AICc framework or using Bayesian analysis. One might expect
these models to behave differently when applied to discrete rather than contin-
uous characters, though. The main reason for this is that discrete characters,
when they evolve rapidly, lose historical information surprisingly quickly. That
means that models with high rates of character transitions will be quite simi-
lar to both models with low “phylogenetic signal” (i.e. λ = 0) and with rates
that accelerate through time (i.e. δ > 0). This indicates potential problems
with model identifiability, and warns us that we might not have good power to
differentiate one model from another.

We can apply these three models to data on frog reproductive modes. But first,
we should try the Mk and extended-Mk models. Doing so, we find the following
results:

Model lnL AICc ∆AICc AIC Weight
ER -316.0 633.9 38.0 0.00
SYM -296.6 599.2 3.2 0.17
ARD -291.9 596.0 0.0 0.83

We can interpret this as strong evidence against the ER model, with ARD as
the best, and weak support in favor of ARD over SYM. We can then try the
three Pagel parameters. Since the support for SYM and ARD were similar, we
will add the extra parameters to each of them. Doing so, we obtain:

Model Extra parameter lnL AICc ∆AICc AIC weight
ER -316.0 633.9 38.0 0.00
SYM -296.6 599.2 5.2 0.02
ARD -291.9 596.0 0 0.37
SYM λ -296.6 601.2 5.2 0.02
SYM κ -296.6 601.2 5.2 0.02
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Model Extra parameter lnL AICc ∆AICc AIC weight
SYM δ -295.6 599.2 3.2 0.07
ARD λ -292.1 598.3 2.3 0.11
ARD κ -291.3 596.9 0.9 0.24
ARD δ -292.4 599.0 3.0 0.08

Notice that our results are somewhat ambiguous, with AIC weights spread fairly
evenly across the three Pagel models. Interestingly, the overall lowest AIC score
(and the most AIC weight, though only just more than 1/3 of the total) is
on the ARD model with no additional Pagel parameters. I interpret this to
mean that, for these data, the standard ARD model with no alterations is
probably a reasonable fit to the data compared to the Pagel-style alternatives
considered above, especially given the additional complexity of interpreting tree
transformations in terms of evolutionary processes.

Section 9.4: Mk models where parameters vary across
clades and/or through time

Another generalization of the Mk model we might imagine is a Mk model where
rate parameters vary, either across clades or through time. There is some recent
work along these lines, with two approaches that consider the possibility that
rates of evolution for an Mk model vary on different branches of a phylogenetic
tree (Marazzi et al. 2012; Beaulieu et al. 2013).

We can understand how these methods work in general terms by considering
a simple case where the rate of character evolution is faster in one clade than
in the rest of the tree. This is the discrete-character version of the approaches
for continuous characters that I discussed in chapter 6 (O’Meara et al. 2006;
Thomas et al. 2006). The simplest way to implement a multi-rate discrete model
is to directly incorporate variation across models into the pruning algorithm that
is used to calculate the Mk model on a phylogenetic tree (see FitzJohn 2012 for
implementation).

One can, for example, consider a model where the overall rate of evolution varies
between clades in a phylogenetic tree. To do this, we can specify the background
rate of evolution using some transition matrix Q, and then assume that within
our focal clade evolution can be modeled with some scalar value r, such that the
new rate matrix is rQ. Given Q and r, one can calculate the likelihood for this
model using the pruning algorithm, modified in such a way that the appropriate
transition matrix is used along each branch in the tree; one can then maximize
the likelihood of the model for all parameters (those describing Q, as well as r,
which describes the relative rate of evolution in the focal clade compared to the
background).
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In even more general terms, we will consider the situation where we can describe
the model of evolution using a set of Q matrices: Q1, Q2, . . ., Qn, each of which
can be assigned to a particular branch in a phylogenetic tree (or be assigned to
branches depending on some other character that influences the rate of the focal
character; Marazzi et al. 2012). The only limit here is that each Q matrix adds
a new set of model parameters that must be estimated from the data, and it is
easy to imagine this model becoming overparametized. If we imagine a model
where every branch has its own Q-matrix, then we are actually describing the
“no common mechanism” model (Tuffley and Steel 1997; Steel and Penny 2000),
which is statistically identical to parsimony. It should also be possible to create
a method that explores all models connecting simple Mk and the no common
mechanism model using the machinery of reversible-jump MCMC, although I
do not think such an approach has ever been implemented (but see Huelsenbeck
et al. 2004).

One can also describe a situation where rate parameters in the Q matrix change
through time. This might follow a constant pattern of increase or decrease
through time, or might be related to some external driver like temperature.
One can mimic models where rates change through time by changing the branch
lengths of phylogenetic trees. If deep branches are lengthened relative to shallow
branches, as is done by Pagel’s δ, then we can fit a model where rates of evolution
slow through time; conversely, lengthening shallow branches relative to deep
ones creates a model where the overall rate of evolution accelerates through
time (see FitzJohn 2012).

More work could certainly be done in the area of time-varying rates of change.
The most general approach is to write a set of differential equations that describe
the changes in character state along single branches in the tree. Parameters in
those equations can be made to vary, either through time or even in a way
that is correlated with some external variable hypothesized to influence rates
of change, like temperature or rainfall. Given such a model, the reverse-time
approach of Maddison et al. (2007) can then be used to fit general time-varying
(or even clade-varying) Mk models to data (see Uyeda et al. 2016).

Section 9.5: Threshold models

Recently, Joe Felsenstein (2005, 2012) introduced a model from quantitative
genetics, the threshold model, to comparative methods. Threshold models work
by modeling a discrete character as underlain by some other, unobserved, con-
tinuous trait (called the liability). If the liability crosses a certain threshold
value, then the discrete state changes. More specifically, we can consider a
single trait, y, with two states, 0 and 1, which is in turn determined by some
underlying continuous variable, x, called the liability. If x is greater than the
threshold, t, then y is 1; otherwise, y is 0. Felsenstein (2005) assumes that x
evolves under a Brownian motion model, although other models like OU are, in
principle, possible.
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We can find the likelihood to this model by considering the observations of
character states at the tips of the tree. We observe the state of each species, yi.
We do not know the liability values for these species. However, we treat these
liabilities as unobserved and consider their distributions. Under a Brownian
motion model, we know that the liabilities will follow a multivariate normal
distribution (see chapter 3). We can calculate the probability of observing the
data (yi) by finding the integral of the distributions of liabilities on the side of
the threshold that matches the data. So if the distribution of the liability for
species i is pi(x), then:

(eq 9.1)

p(yi = 0) =
t∫

−∞

pi(x)dx

and

p(yi = 1) =
∞∫

t

pi(x)dx

(see Figure 9.3 for an illustration of this calculation, which is easier than it
looks since there are standard formulas for finding the area under a normal
distribution).

One can fit this model using standard ML or Bayesian methods. Current imple-
mentations include an expectation-maximization (EM) algorithm (Felsenstein
2005, 2012) and a Bayesian MCMC (Revell 2014).

The threshold model differs in some key ways from standard Mk-type models.
First of all, threshold characters evolve differently than non-threshold characters
because of their underlying liability. In particular, the effective rate of change
of the discrete character depends on the amount of time that a lineage has been
in that character state. Characters that have just changed (say, from 0 to 1)
are likely to change back (from 1 to 0), since the liability is likely to be near the
threshold. By contrast, characters that have been in one state or the other for
a long time tend to be more unlikely to change (since the liability is likely very
far from the threshold). This difference matches biological intuition for some
characters, where millions of years in one state means that change to a different
state might be unlikely. This behavior of the threshold model can potentially
account for variation in transition rates across clades without adding additional
model parameters. Second, the threshold model scales to cover more than one
character more readily than Mk models. Finally, in a threshold framework, it is
straightforward to extend the model to include a mixture of both discrete and
continuous characters – basically, one assumes that the continuous characters
are like “observed liabilities,” and can be modeled together with the discrete
characters.
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Figure 9.3. Illustration of the integral in equation 9.1. For a trait with observed
state zero we calculate the area under the curve from negative infinity to the
threshold t. Image by the author, can be reused under a CC-BY-4.0 license.

9

https://creativecommons.org/licenses/by/4.0/


Section 9.6: Modeling more than one discrete character at
a time

It is extremely common to have datasets with more than one discrete character
– in fact, one could argue that multivariate discrete datasets are the cornerstone
of systematics. Nowadays, the most common multivariate discrete datasets
are composed of genetic/genomic data. However, the foundations of modern
phylogenetic comparative biology were laid out by Hennig (1966) and the other
early cladists, who worked out methods for using discrete character data to
obtain phylogenetic trees that show the evolutionary history of clades.

Almost all phylogenetic reconstruction methods that use discrete characters as
data make a key assumption: that each of these characters evolves indepen-
dently from one another. Mathematically, one calculates the likelihood for each
single character, then multiplies this likelihood (or, equivalently, adds the log-
likelihood) across all characters to obtain the likelihood of the data.

The assumption of character independence is clearly not true in general. In
the case of morphological characters, structures often interact with one another
to determine the fitness of an individual, and it seems very likely that those
structures are not independent. In fact, some times we are specifically interested
in whether or not particular sets of characters evolve independently or not.
Methods that assume character independence a priori are not useful for that
sort of framework.

Felsenstein (1985) made a huge impact on the field of evolutionary biology with
a statistical argument about species: species can not be considered independent
data points because they share an evolutionary history. Species that are most
closely related to one another will covary, simply due to that shared history.
Nowadays, one cannot publish a paper in comparative biology without account-
ing directly for the non-independence of species that evolve on a tree. However,
it is still very common to ignore the non-independence of characters, even when
they occur together in the same organism! Surely the shared developmental his-
tory of two characters within one body commonly leads to correlations across
these characters.

Section 9.7: Testing for non-independent evolution of dif-
ferent characters

Hypotheses in evolutionary biology often relate to whether two (or more) traits
affect the evolution of one another (see Chapter 5). One can have a standard
correlation between two discrete traits if knowing the state of one trait allows you
to predict the state of the other. However, in evolution, these correlations will
arise due to the shared patterns of relatedness across species. We are typically
more interested in evolutionary correlations (see Chapter 5). With discrete
traits, we can define evolutionary correlations in a specific way: two discrete

10



traits share an evolutionary correlation if the state of one character affects the
relative transition rates of a second.

Imagine that we are considering the evolution of two traits, trait 1 and trait 2,
on a phylogenetic tree. Both traits have two possible character states, one and
zero. We can show these two traits visually as Figure 9.4.

Figure 9.4. Two discrete character traits, each with two states (labeled 0 and
1). Image by the author, can be reused under a CC-BY-4.0 license.

In the figure, each trait has two possible transition rates, from 0 to 1 and from
1 to 0. For now, let’s assume that backwards and forward rates are equal. Any
species can have one of four possible combinations of the two traits (00, 01, 10,
or 11). We can draw the transitions among these four combinations as Figure
9.5.

In Figure 9.6, I have marked the distinct rates with different rectangles – black
represents changes in trait 1, while checkered is changes in trait 2. Notice that,
in this figure, we are assuming that the two traits are independent. That is, in
this model the transition rates of trait one do not depend on the state of trait
2, and vice-versa. What would happen to our model if we allow the traits to
evolve in a dependent manner?

Notice that in Figure 9.6, we have four different transition rates. Consider first
the solid rectangles. The grey rectangle represents the transition rate for trait
1 when trait 2 has state 0, while the black rectangle represents the transition
rate for trait 1 when trait 2 has state 1. If these two rates are different, then
the traits are dependent on each other – that is, the rate of evolution of trait 1
depends on the character state of trait 2.

These two models have different numbers of parameters, but are relatively easy
to fit using the maximum-likelihood approach outlined in this chapter. The
key is to write down the transition matrix (Q) for each model. For example, a
transition matrix for model in figure 9.4 is:
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Figure 9.5. Transitions among states for two traits with two character states
each where characters evolve independently of one another. Image by the author,
can be reused under a CC-BY-4.0 license.
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Figure 9.6. Transitions among states for two traits with two character states
each where characters evolve at rates that depend on the character state of the
other trait. Image by the author, can be reused under a CC-BY-4.0 license.
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(eq. 9.2)

Q =


−q1 − q2 q1 q2 0

q1 −q1 − q2 0 q2
q2 0 −q1 − q2 q1
0 q2 q1 −q1 − q2


In the matrix above, each row and column corresponds to a particular combi-
nation of states for character 1 and 2: (0,0), (0,1), (1,0), and (1,1). Note that
some possible transitions in this model have rate 0, meaning they do not oc-
cur. These are transitions that would require both characters to change exactly
simultaneously (e.g. (0,0) to (1,1) – a possibility that is excluded from this
model.

Similarly, we can write a transition matrix for the model in figure 9.5:

(eq. 9.3)

Q =


−q1 − q2 q1 q2 0

q1 −q1 − q3 0 q3
q2 0 −q2 − q4 q4
0 q3 q4 −q3 − q4


Notice that the simple, 2-parameter independent evolution model is a special
case of the more complex, 4-parameter dependent model. Because of this, we
can compare the two with a likelihood ratio test. Alternatively, AIC or Bayes
factors can be used. If we find support for the 4-parameter model, we can
conclude that the evolution of at least one of the two characters depends on the
state of the other.

It is worth noting that there are other models that one can fit for the evolution of
two binary traits that I did not discuss above. For example, one can model the
situation where the two traits each have different forwards and backwards rates,
but are evolving independently. This is a four-parameter model. Additionally,
one can allow both forward and backward rates to differ and to depend on the
character state of the other trait: an eight-parameter model. This is the model
one needs to truly see a correlation between the two characters, one where
certain combinations tend to accumulate in the tree. All of these models – and
others not described here – can be compared using AIC, BIC, or Bayes Factors.
Pagel and Meade (2006) describe a particularly innovative and synthetic method
to test hypotheses about correlated evolution of discrete characters in a Bayesian
framework using reversible-jump MCMC.

One can also test for correlations among discrete characters using threshold
models. Here, one tests whether or not the liabilities for the two characters
evolve in a correlated fashion. More specifically, we can model liabilities for the
two threshold characters using a bivariate Brownian motion model, with some
evolutionary covariance σ2

12 between the two liabilities. We can then use either
ML or Bayesian methods to determine if the evolutionary covariance between

14



the two characters is non-zero (following the methods described in chapter 5,
but using likelihoods based on discrete characters as described above).

Section 9.8: Chapter summary

The simple Mk model provides a useful foundation for a number of innovative
methods. These methods capture evolutionary processes that are more com-
plicated than the original model, including models that vary through time or
across clades. Modeling more than one discrete character at a time allows us to
test for the correlated evolution of discrete characters.

Taken as a whole, chapters 7 through 9 provide a basis for the analysis of discrete
characters on trees. One can test a variety of biologically relevant hypotheses
about how these characters have changed along the branches of the tree of life.
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