Chapter 8: Fitting models of discrete character
evolution

Section 8.1: The evolution of limbs and limblessness

In the introduction to Chapter 7, I mentioned that squamates had lost their
limbs repeatedly over their evolutionary history. This is a pattern that has
been known for decades, but analyses have been limited by the lack of a large,
well-supported species-level phylogenetic tree of squamates (but see Brandley
et al. 2008). Only in the past few years have phylogenetic trees been produced
at a scale broad enough to take a comprehensive look at this question [e.g.
Bergmann and Irschick (2012); Pyron et al. (2013); see Figure 8.1]. Such efforts
to reconstruct this section of the tree of life provide exciting potential to revisit
old questions with new data.
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Figure 8.1. A view of the squamate tree of life. Data from Bergmann et
al.  (2012), visualized using OneZoom [Rosindell and Harmon (2012); see
www.onezoom.org]. This image can be reused under a CC-BY-4.0 license.

Plotting the pattern of limbed and limbless species on the tree leads to interest-
ing questions about the tempo and mode of this trait in squamates. For example,
are there multiple gains as well as losses of limbs? Do gains and losses happen at
the same rate, or (as we might expect) are gains more rare than losses? We can
test hypothesis such as these using the the Mk and extended-Mk models (see
chapter 7). In this chapter we will fit these models to phylogenetic comparative
data.
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Section 8.2: Fitting Mk models to comparative data

The equations in Chapter 7 give us enough information to calculate the likeli-
hood for comparative data on a tree. To understand how this is done, we can
first consider the simplest case, where we know the beginning state of a char-
acter, the branch length, and the end state. We can then apply the method
across an entire tree using a pruning algorithm, which will allow calculation of
the likelihood of the data given the model and phylogenetic tree.

Imagine that a two-state character changes from a state of 0 to a state of 1
sometime over a time interval of ¢ = 3. What is the likelihood of these data
under the Mk model? As we did in equation 7.17, we can set a rate parameter
q = 0.5 to calculate a probability matrix:

(eq. 8.1)
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For this simple example, we started with state 0, so we look at the first row.
Along this branch, we ended at state 1, so we should look specifically at p12(t):
the probability of starting with state 0 and ending with state 1 over time t.
This value is the probability of obtaining the data given the model (i.e. the
likelihood): L = 0.475.

This likelihood applies to the evolutionary process along this single branch.

When we have comparative data the situation is more complex. If we knew the
ancestral character states and states at every node in the tree, then calculation
of the overall likelihood would be straightforward — we could just apply the ap-
proach above many times, once for each branch of the tree. However, there are
two problems. First, we don’t know the starting state of the character at the
root of the tree, and must treat that as an unknown. Second, we are modeling
a process that is happening independently on many branches in a phylogenetic
tree, and only observe the states at the end of these branches. All of the char-
acter states at internal nodes of the tree are unknown. The likelihood that we
want to calculate has to be summed across all of these unknown character state
possibilities on the internal branches of the tree.

Thankfully, Felsenstein (1973) provides an elegant algorithm for calculating the
likelihoods for discrete characters on a tree. This algorithm, called Felsenstein’s
pruning algorithm, is described with an example in the appendix to this chapter.
Felsenstein’s pruning algorithm was important in the history of phylogenetics
because it allowed scientists to efficiently calculate the likelihoods of comparative
data given a tree and a model. One can then maximize that likelihood by
changing model parameters (and perhaps also the topology and branch lengths
of the tree; see Felsenstein 2004).



Pruning also gives some insight into how we can calculate probabilities on trees;
many other problems in comparative methods can be approached using different
pruning algorithms.

Felsenstein’s pruning algorithm proceeds backwards in time from the tips to the
root of the tree (see appendix, section 8.8). At the root, we must specify the
probabilities of each character state in the common ancestor of the species in
the clade. As mentioned in Chapter 7, there are at least three possible methods
for doing this. First, one can assume that each state can occur at the root with
equal probability. Second, one can assume that the states are drawn from their
stationary distribution, as given by the model. The stationary distribution is a
stable probability distribution of states that is reached by the model after a long
amount of time. Third, one might have some information about the root state —
perhaps from fossils, or information about character states in a set of outgroup
taxa — that can be used to assign probabilities to the states. In practice, the
first two of these methods are more common. In the case discussed above — an
Mk model with all transition rates equal — the stationary distribution is one
where all states are equally probable, so the first two methods are identical. In
general, though, these three methods can give different results.

Section 8.3: Using maximum likelihood to estimate param-
eters of the Mk model

The algorithm in the appendix below gives the likelihood for any particular
discrete-state Markov model on a tree, but requires us to specify a value of the
rate parameter g. In the example given, this rate parameter ¢ = 1.0 corresponds
to a InL of -6.5. But is this the best value of ¢ to use for our Mk model? Probably
not. We can use maximum likelihood to find a better estimate of this parameter.

If we apply the pruning algorithm across a range of different values of ¢, the
likelihood changes. To find the ML estimate of ¢, we can again use numerical
optimization methods, calculating the likelihood by pruning for many values of
q and finding the maximum.

Applying this method to the lizard data, we obtain a maximum liklihood esti-
mate of ¢ = 0.001850204 corresponding to InL = —80.487176.

The example above considers maximization of a single parameter, which is a
relatively simple problem. When we extend this to a multi-parameter model —
for example, the extended Mk model will all rates different (ARD) — maximizing
the likelihood becomes much more difficult. R packages solve this problem by
using sophisticated algorithms and applying them multiple times to make sure
that the value found is actually a maximum.



Section 8.4: Using Bayesian MCMC to estimate parame-
ters of the Mk model

We can also analyze this model using a Bayesian MCMC framework. We can
modify the standard approach to Bayesian MCMC (see chapter 2):

1. Sample a starting parameter value, ¢, from its prior distributions. For
this example, we can set our prior distribution as uniform between 0 and
1. (Note that one could also treat probabilities of states at the root as a
parameter to be estimated from the data; in this case we will assign equal
probabilities to each state).

2. Given the current parameter value, select new proposed parameter values
using the proposal density Q(q’|q). For example, we might use a uniform
proposal density with width 0.2, so that Q(¢’|¢) U(q — 0.1,q 4+ 0.1).

3. Calculate three ratios:

 a. The prior odds ratio, Rpyior. In this case, since our prior is uniform,
Rprior =1.

o b. The proposal density ratio, Rproposai- In this case our proposal
density is symmetrical, so Rpyroposai = 1.

e c. The likelihood ratio, Rykeiinood- We can calculate the likelihoods
using Felsenstein’s pruning algorithm (Box 8.1); then calculate this
value based on equation 2.26.

4. Find Rgceept as the product of the prior odds, proposal density ratio, and
the likelihood ratio. In this case, both the prior odds and proposal density
ratios are 1, 80 Raccept = Riikelinood

5. Draw a random number u from a uniform distribution between 0 and 1.
If w < Rgeeept, accept the proposed value of both parameters; otherwise
reject, and retain the current value of the two parameters.

6. Repeat steps 2-5 a large number of times.

We can run this analysis on our squamate data, obtaining a posterior with a
mean estimate of ¢ = 0.001980785 and a 95% credible interval of 0.001174813 —
0.003012715.

Section 8.5: Exploring Mk: the “total garbage” test

One problem that arises sometimes in maximum likelihood optimization hap-
pens when instead of a peak, the likelihood surface has a long flat “ridge” of
equally likely parameter values. In the case of the Mk model, it is common to
find that all values of ¢ greater than a certain value have the same likelihood.
This is because above a certain rate, evolution has been so rapid that all traces



of the history of evolution of that character have been obliterated. After this
point, character states of each lineage are random, and have no relationship to
the shape of the phylogenetic tree. Our optimization techniques will not work
in this case because there is no value of q that has a higher likelihood than other
values. Once we get onto the ridge, all values of ¢ have the same likelihood.

For Mk models, there is a simple test that allows us to recognize when the
likelihood surface has a long ridge, and ¢ values cannot be estimated. I like
to call this test the “total garbage” test because it can tell you if your data
are “garbage” with respect to historical inference — that is, your data have no
information about historical patterns of trait change. One can predict states
just as well by choosing each species at random.

To carry out the total garbage test, imagine that you are just drawing trait values
at random. That is, each species has some probability p of having character state
0, and some probability (1 — p) of having state 1 (one can also generalize this
test to multi-state models). This likelihood is easy to write down. For a tree of
size n, the probability of drawing ng species with state 0 is:

(eq. 8.2)

n—no

Lgarbage = pno (1 - p)

This equation gives the likelihood of the “total garbage” model for any value of
p. Equation 8.1 is related to a binomial distribution (lacking only the factorial
term). We also know from probability theory that the ML estimate of p is ng/n,
with likelihood given by the above formula.

Now consider the likelihood surface of the Mk model. When Mk likelihood
surfaces have long ridges, they are nearly always for high values of ¢ — and
when the transition rate of character changes is high, this model converges to
our “drawing from a hat” (or “garbage”) model. The likelihood ridge lies at the
value that is exactly taken from equation 8.10 above.

Thus, one can compare the likelihood of our Mk model to the total garbage
model. If the maximum likelihood value of ¢ has the same likelihood as our
garbage model, then we know that we are on a ridge of the likelihood surface
and ¢ cannot be estimated. We also have no ability to make any statements
about the past evolution of our character — in particular, we cannot estimate
ancestral character state with any precision. By contrast, if the likelihood of
the Mk model is greater than the total garbage model, then our data contains
some historical information. We can also make this comparison using AIC,
considering the total garbage model as having a single parameter p.

For the squamates, we have n = 258 and ny = 207. We calculate p =
no/n = 207/258 = 0.8023256. So the likelihood of our garbage model is
Lgarbage = p™ (1 — p)"~"0 = 0.8023256207(1 — 0.8023256)°1 = 1.968142¢ — 56.
This calculation is both easier and more useful, though, on a natural-log scale:
InLgarbage = 1o - In(p) + (n — ng) - In(1 — p) = 207 - In(0.8023256) + 51 - In(1 —
0.8023256) = —128.2677. Compare this to the log-likelihood of our Mk model,



InL = —80.487176, and you will see that the garbage model is a terrible fit to
these data. There is, in fact, some historical information about species’ traits
in our data.

Section 8.6: Testing for differences in the forwards and
backwards rate of character change

I have been referring to an example of lizard limb evolution throughout this
chapter, but we have not yet tested the hypothesis that I stated in the intro-
duction: that transition rates for losing limbs are higher than rates of gaining
limbs.

To do this, we can compare our one-rate Mk model with a two-rate model with
differences in the rate of forwards and backwards transitions. The character
states are 1 (no limbs) and 2 (limbs), and the forward transition represents
gaining limbs. This is a special case of the “all-rates different” model discussed
in chapter two. Q matrices for these two models will be, for model 1 (equal
rates):

(eq. 8.3)
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And for model 2, asymmetric:

(eq. 8.4)
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Notice that the ER model has one parameter, while the ASY model has two.
Also we have specified equal probabilities of each character at the root of the
tree, which may not be justified. But this comparison is still useful as a simple
example.

One can compare the two nested models using standard methods discussed in
previous chapters — that is, a likelihood-ratio test, AIC, BIC, or other similar
methods.

We can apply all of the above methods to analyze the evolution of limblessness
in squamates. We can use the tree and character state data from Brandley et
al. (2008), which is plotted with ancestral state reconstructions under an ER
model in Figure 8.2.
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Figure 8.2. Reconstructed patterns of the evolution of limbs and limblessness
across squamates. Tips show states of extant taxa (here, I classified species
with neither fore- nor hindlimbs as limbless, which is conservative given the
variation across this clade (see chapter 7). Pie charts on internal nodes show
proportional marginal likelihoods for ancestral state reconstruction under an
ER model. Data from Brandley et al. (2008). Image by the author, can be
reused under a CC-BY-4.0 license.
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If we fit an Mk model to these data assuming equal state frequencies at the root
of the tree, we obtain a InL of -80.5 and an estimate of the Qg R matrix as:

(eq. 8.5)

Qur — —0.0019  0.0019
ER =1 0.0019 —0.0019

The ASY model with different forward and backward rates gives a InL of -79.4
and:

(eq. 8.6)

Q _ [-0.0016  0.0016
ASY =1 0.0038  —0.0038

Note that the ASY model has a higher backwards than forwards rate; as ex-
pected, we estimate a rate of losing limbs that is higher than the rate of gain-
ing them (although the difference is surprisingly low). Is this statistically sup-
ported? We can compare the AIC scores of the two models. For the ER model,
AIC. = 163.0, while for the ASY model AIC,. = 162.8. The AICc score is
higher for the unequal rates model, but only by about 0.2 — which is not defini-
tive either way. So based on this analysis, we cannot rule out the possibility
that forward and backward rates are equal.

A Bayesian analysis of the ASY model gives similar conclusions (Figure 8.3). We
can see that the posterior distribution for the backwards rate (¢21) is higher than
the forwards rate (gi2), but that the two distributions are broadly overlapping.

You might wonder about how we can reconcile these results, which suggest that
squamates gain limbs at least as frequently as they lose them, with our biological
intuition that limbs should be much more difficult to gain than they are to lose.
But keep in mind that our comparative analysis is not using any information
other than the states of extant species to reconstruct these rates. In particular,
identifying irreversible evolution using comparative methods is a problem that
is known to be quite difficult, and might require outside information in order to
resolve conclusively. For example, if we had some information about the relative
number of mutational steps required to gain and lose limbs, we could use an
informative prior — which would, I suspect, suggest that limbs are more difficult
to gain than they are to lose. Such a prior could dramatically alter the results
presented in Figure 8.3. We will return to the problem of irreversible evolution
later in the book (Chapter 13).

Section 8.7: Chapter summary

In this chapter I describe how Felsenstein’s pruning algorithm can be used to
calculate the likelihoods of Mk and extended-Mk models on phylogenetic trees.
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Figure 8.3. Bayesian posterior distibutions for the extended-Mk model applied

to the evolution of limblessness in squamates. Image by the author, can be
reused under a CC-BY-4.0 license.
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I have also described both ML and Bayesian frameworks that can be used to test
hypotheses about character evolution. This chapter also includes a description
of the “total garbage” test, which will tell you if your data has information
about evolutionary rates of a given character.

Analyzing our example of lizard limbs shows the power of this approach; we can
estimate transition rates for this character over macroevolutionary time, and
we can say with some certainty that transitions between limbed and limbless
have been asymmetric. In the next chapter, we will build on the Mk model
and further develop our comparative toolkit for understanding the evolution of
discrete characters.

Section 8.8: Appendix: Felsenstein’s pruning algorithm

Felsenstein’s pruning algorithm (1973) is an example of dynamic programming,
a type of algorithm that has many applications in comparative biology. In dy-
namic programming, we break down a complex problem into a series of simpler
steps that have a nested structure. This allows us to reuse computations in an
efficient way and speeds up the time required to make calculations.

The best way to illustrate Felsenstein’s algorithm is through an example, which
is presented in the panels below. We are trying to calculate the likelihood for a
three-state character on a phylogenetic tree that includes six species.

1. The first step in the algorithm is to fill in the probabilities for the tips. In
this case, we know the states at the tips of the tree. Mathematically, we
state that we know precisely the character states at the tips; the proba-
bility that that species has the state that we observe is 1, and all other
states have probability zero:

2. Next, we identify a node where all of its immediate descendants are tips.
There will always be at least one such node; often, there will be more than
one, in which case we will arbitrarily choose one. For this example, we
will choose the node that is the most recent common ancestor of species
A and B, labeled as node 1 in Figure 8.2B.

3. We then use equation 7.6 to calculate the conditional likelihood for each
character state for the subtree that includes the node we chose in step 2
and its tip descendants. For each character state, the conditional likeli-
hood is the probability, given the data and the model, of obtaining the
tip character states if you start with that character state at the root. In
other words, we keep track of the likelihood for the tipward parts of the
tree, including our data, if the node we are considering had each of the
possible character states. This calculation is:

(eq. 8.7)
Lp(i) = () Pr(ali,tr)Li(x)) - (O Pr(ali,tr)Lr(z))

z€k z€k
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Species A B c D E F

Character state at tips 0 1 0 2 2 1

Figure 8.4A. Fach tip and internal node in the tree has three boxes, which will
contain the probabilities for the three character states at that point in the tree.
The first box represents a state of 0, the second state 1, and the third state 2.
Image by the author, can be reused under a CC-BY-4.0 license.
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Species A B o] D E F

Character state at tips 0 1 0 2 2 1

Figure 8.4B. We put a one in the box that corresponds to the actual character
state and zeros in all others. Image by the author, can be reused under a
CC-BY-4.0 license.
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Where i and x are both indices for the k£ character states, with sums taken across
all possible states at the branch tips (), and terms calculated for each possible
state at the node (i). The two pieces of the equation are the left and right
descendant of the node of interest. Branches can be assigned as left or right
arbitrarily without affecting the final outcome, and the approach also works for
polytomies (but the equation is slightly different). Furthermore, each of these
two pieces itself has two parts: the probability of starting and ending with
each state along the two branches being considered, and the current conditional
likelihoods that enter the equation at the tips of the subtree (L (z) and Lg(x)).
Branch lengths are denoted as t;, and ti for the left and right, respectively.

One can think of the likelihood “flowing” down the branches of the tree, and
conditional likelihoods for the left and right branches get combined via multipli-
cation at each node, generating the conditional likelihood for the parent node
for each character state (Lp(7)).

Consider the subtree leading to species A and B in the example given. The two
tip character states are 0 (for species A) and 1 (for species B). We can calculate
the conditional likelihood for character state 0 at node 1 as:

(eq. 8.8)

Lp(0) = (> Pr(z|0,t, = 1.0)L.(x)) - (> Pr(z|0,tg = 1.0)Lr(x))
zEk z€k

Next, we can calculate the probability terms from the probability matrix P. In
this case t;, = tg = 1.0, so for both the left and right branch:
(eq. 8.9)

So that: (eq. 8.10)
0.37 0.32 0.32
P=¢%= 032 037 032
0.32 0.32 0.37

Now notice that, since the left character state is known to be zero, L (0) = 1
and Lz(1) = Ly(2) = 0. Similarly, the right state is one, so Lg(1) = 1 and
Lr(0) = Lr(2) = 0.

We can now fill in the two parts of equation 8.2:

(eq. 8.11)

> Pr(x(0,t; = 1.0)L(x) = 0.37- 1+ 0.32-0+0.32- 0 = 0.37
zek
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and:

> Pr(z)0,tg = 1.0)Lg(x) = 0.37-0+0.32-1+0.32- 0 = 0.32
ek

So: (eq. 8.12)
Lp(0) = 0.37-0.32 = 0.12.

This means that under the model, if the state at node 1 were 0, we would have
a likelihood of 0.12 for this small section of the tree. We can use a similar
approach to find that:

(eq. 8.13)
Lp(1) = 0.32-0.37 = 0.12.

Now we have the likelihood for all three possible ancestral states. These numbers
can be entered into the appropriate boxes:

Species A B o] D E F

Character state at tips 0 1 0 2 2 1

Figure 8.4C. Conditional likelihoods entered for node 1. Image by the author,
can be reused under a CC-BY-4.0 license.

4. We then repeat the above calculation for every node in the tree. For nodes
3-5, not all of the Ly (z) and Lgr(z) terms are zero; their values can be
read out of the boxes on the tree. The result of all of these calculations:

5. We can now calculate the likelihood across the whole tree using the con-
ditional likelihoods for the three states at the root of the tree.

14
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Species A B o] D E F

Character state at tips 0 1 0 2 2 1

Figure 8.4D. Conditional likelihoods entered for all nodes. Image by the author,
can be reused under a CC-BY-4.0 license.

(eq. 8.14)
L= Z 7T$Lroot($)

zck

Where 7, is the prior probability of that character state at the root of the tree.
For this example, we will take these prior probabilities to be uniform, equal for
each state (m, = 1/k = 1/3). The likelihood for our example, then, is:

(eq. 8.15)

L=1/3-0.00150+ 1/3-0.00151 + 1/3 - 0.00150 = 0.00150

Note that if you try this example in another software package, like GEIGER or
PAUP*, the software will calculate a In-likelihood of -6.5, which is exactly the
natural log of the value calculated here.
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