
Chapter 4: Fitting Brownian Motion Models to
Single Characters

Section 4.1: Introduction

Mammals come in a wide variety of shapes and sizes. Some species are incredibly
tiny. For example, the bumblebee bat, weighing in at 2 g, competes for the title
of smallest mammal with the slightly lighter (but also slightly longer) Etruscan
shrew (Hill 1974). Other species are huge, as anyone who has encountered a blue
whale knows. Body size is important as a biological variable because it predicts
so many other aspect of an animal’s life, from the physiology of heat exchange
to the biomechanics of locomotion. Thus, the rate at which body size evolves
is of great interest among mammalian biologists. Throughout this chapter, I
will discuss the evolution of body size across different species of mammals. The
data I will analyze is taken from Garland (1992).

Sometimes one might be interested in calculating the rate of evolution of a
particular character like body size in a certain clade, say, mammals. You have
a phylogenetic tree with branch lengths that are proportional to time, and data
on the phenotypes of species on the tips of that tree. It is usually a good idea
to log-transform your data if they involve a measurement from a living thing
(see Box 4.1, below). If we assume that the character has been evolving under a
Brownian motion model, we have two parameters to estimate: z̄(0), the starting
value for the Brownian motion model – equivalent to the ancestral state of the
character at the root of the tree – and σ2, the diffusion rate of the character. It
is this latter parameter that is commonly considered as the rate of evolution for
comparative approaches1.

Box 4.1: Biology under the log

One general rule for continuous traits in biology is to carry out a log-
transformation (usually natural log, base e, denoted ln) of your data before
undertaking any analysis. This also applies to comparative data. There
are two main reasons for this, one statistical and the other biological. The
statistical reason is that many methods assume that variables follow normal
distributions. One can observe that, in general, measurements of species’ traits
have a distribution that is skewed to the right. A log-transformation will often
result in trait distributions that are closer to normal. But why is this the case?
The answer is related to the biological reason for log-transformation. When
you log transform a variable, the new scale for that variable is a ratio scale,
so that a certain differences between points reflects a constant ratio of the
two numbers represented by the points. So, for example, if any two numbers
are separated by 0.693 units on a natural log scale, one will be exactly two
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times the other. Ratio scales make sense for living things because it is usually
percentage changes rather than absolute changes that matter. For example, a
change in body size of 1 mm might matter a lot for a termite, but be irrelevant
for an elephant; whereas a change in body size of 50% might be expected to
matter for them both.

Section 4.2: Estimating rates using independent contrasts

The information required to estimate evolutionary rates is efficiently summa-
rized in the early (but still useful) phylogenetic comparative method of indepen-
dent contrasts (Felsenstein 1985). Independent contrasts summarize the amount
of character change across each node in the tree, and can be used to estimate
the rate of character change across a phylogeny. There is also a simple mathe-
matical relationship between contrasts and maximum-likelihood rate estimates
that I will discuss below.

We can understand the basic idea behind independent contrasts if we think
about the branches in the phylogenetic tree as the historical “pathways” of
evolution. Each branch on the tree represents a lineage that was alive at some
time in the history of the Earth, and during that time experienced some amount
of evolutionary change. We can imagine trying to measure that change initially
by comparing sister taxa. We can compare the trait values of the two sister taxa
by finding the difference in their trait values, and then compare that to the total
amount of time they have had to evolve that difference. By doing this for all
sister taxa in the tree, we will get an estimate of the average rate of character
evolution ( 4.1A). But what about deeper nodes in the tree? We could use other
non-sister species pairs, but then we would be counting some branches in the
tree of life more than once (Figure 4.1B). Instead, we use a “pruning algorithm,”
(Felsenstein 1985, Felsenstein (2004)) chopping off pairs of sister taxa to create
a smaller tree (Figure 4.1C). Eventually, all of the nodes in the tree will be
trimmed off – and the algorithm will finish. Independent contrasts provides a
way to generalize the approach of comparing sister taxa so that we can quantify
the rate of evolution throughout the whole tree.

A more precise algorithm describing how phylogenetic independent contrasts are
calculated is provided in Box 4.2, below (from Felsenstein 1985). Each contrast
can be described as an estimate of the direction and amount of evolutionary
change across the nodes in the tree. PICs are calculated from the tips of the
tree towards the root, as differences between trait values at the tips of the tree
and/or calculated average values at internal nodes. The differences themselves
are sometimes called “raw contrasts” (Felsenstein 1985). These raw contrasts
will all be statistically independent of each other under a wide range of evolu-
tionary models. In fact, as long as each lineage in a phylogenetic tree evolves
independently of every other lineage, regardless of the evolutionary model, the
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Figure 4.1. Pruning algorithm that can be used to identify five independent
contrasts for a tree with six species (following Felsenstein 1985). The numbered
order in this figure is only one of several possibilities that work; one can also
prune the tree in the order 1, 2, 4, 3, 5 and get identical results. Image by the
author, can be reused under a CC-BY-4.0 license.
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raw contrasts will be independent of each other. However, people almost never
use raw contrasts because they are not identically distributed; each raw contrast
has a different expected distribution that depends on the model of evolution and
the branch lengths of the tree. In particular, under Brownian motion we expect
more change on longer branches of the tree. Felsenstein (1985) divided the raw
contrasts by their expected standard deviation under a Brownian motion model,
resulting in standardized contrasts. These standardized contrasts are, under a
BM model, both independent and identically distributed, and can be used in a
variety of statistical tests. Note that we must assume a Brownian motion model
in order to standardize the contrasts; results derived from the contrasts, then,
depend on this Brownian motion assumption.

Box 4.2: Algorithm for PICs

One can calculate PICs using the algorithm from Felsenstein (1985). I reproduce
this algorithm below. Keep in mind that this is an iterative algorithm – you
repeat the five steps below once for each contrast, or n − 1 times over the whole
tree (see Figure 4.1C as an example).

1. Find two tips on the phylogeny that are adjacent (say nodes i and j) and
have a common ancestor, say node k. Note that the choice of which node
is i and which is j is arbitrary. As you will see, we will have to account
for this “arbitrary direction” property of PICs in any analyses where we
use them to do certian analyses!

2. Compute the raw contrast, the difference between their two tip values:
(eq. 4.1)

cij = xi − xj

• Under a Brownian motion model, cij has expectation zero and variance
proportional to vi + vj .

3. Calculate the standardized contrast by dividing the raw contrast by its
variance (eq. 4.2)

sij = cij

vi + vj
= xi − xj

vi + vj

• Under a Brownian motion model, this contrast follows a normal distri-
bution with mean zero and variance equal to the Brownian motion rate
parameter σ2.

4. Remove the two tips from the tree, leaving behind only the ancestor k,
which now becomes a tip. Assign it the character value: (eq. 4.3)

xk = (1/vi)xi + (1/vj)xj

1/v1 + 1/vj
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• It is worth noting that xk is a weighted average of xi and xj , but does
not represent an ancestral state reconstruction, since the value is only
influenced by species that descend directly from that node and not other
relatives.

5. Lengthen the branch below node k by increasing its length from vk to
vk + vivj/(vi + vj). This accounts for the uncertainty in assigning a value
to xk.

As mentioned above, we can apply the algorithm of independent contrasts to
learn something about rates of body size evolution in mammals. We have a
phylogenetic tree with branch lengths as well as body mass estimates for 49
species (Figure 4.2). If we ln-transform mass and then apply the method above
to our data on mammal body size, we obtain a set of 48 standardized contrasts.
A histogram of these contrasts is shown as Figure 4.2 (data from from Garland
1992).

Note that each contrast is an amount of change, xi − xj , divided by a branch
length, vi + vj , which is a measure of time. Thus, PICs from a single trait can
be used to estimate σ2, the rate of evolution under a Brownian model. The PIC
estimate of the evolutionary rate is:

(eq. 4.4)

σ̂2
P IC =

∑
s2

ij

n − 1

That is, the PIC estimate of the evolutionary rate is the average of the n − 1
squared contrasts. This sum is taken over all sij , the standardized independent
contrast across all (i, j) pairs of sister branches in the phylogenetic tree. For a
fully bifurcating tree with n tips, there are exactly n − 1 such pairs. If you are
statistically savvy, you might note that this formula looks a bit like a variance.
In fact, if we state that the contrasts have a mean of 0 (which they must because
Brownian motion has no overall trends), then this is a formula to estimate the
variance of the contrasts.

If we calculate the mean sum of squared contrasts for the mammal body mass
data, we obtain a rate estimate of σ̂2

P IC = 0.09. We can put this into words:
if we simulated mammalian body mass evolution under this model, we would
expect the variance across replicated runs to increase by 0.09 per million years.
Or, in more concrete terms, if we think about two lineages diverging from one
another for a million years, we can draw changes in ln-body mass for both of
them from a normal distribution with a variance of 0.09. Their difference, then,
which is the amount of expected divergence, will be normal with a variance of
2 · 0.09 = 0.18. Thus, with 95% confidence, we can expect the two species to
differ maximally by two standard deviations of this distribution, 2·

√
0.18 = 0.85.

Since we are on a log scale, this amount of change corresponds to a factor of
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Figure 4.2. Histogram of PICs for ln-transformed mammal body mass on a
phylogenetic tree with branch lengths in millions of years (data from Garland
1992). Image by the author, can be reused under a CC-BY-4.0 license.
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e2.68 = 2.3, meaning that one species will commonly be about twice as large (or
small) as the other after just one million years.

Section 4.3: Estimating rates using maximum likelihood

We can also estimate the evolutionary rate by finding the maximum-likelihood
parameter values for a Brownian motion model fit to our data. Recall that ML
parameter values are those that maximize the likelihood of the data given our
model (see Chapter 2).

We already know that under a Brownian motion model, tip character states
are drawn from a multivariate normal distribution with a variance-covariance
matrix, C, that is calculated based on the branch lengths and topology of the
phylogenetic tree (see Chapter 3). We can calculate the likelihood of obtaining
the data under our Brownian motion model using a standard formula for the
likelihood of drawing from a multivariate normal distribution:

(eq. 4.5)

L(x|z̄(0), σ2, C) = e−1/2(x−z̄(0)1)⊺(σ2C)−1(x−z̄(0)1)√
(2π)ndet(σ2C)

Here, our model parameters are σ2 and z̄(0), the root trait value. x is an n × 1
vector of trait values for the n tip species in the tree, with species in the same
order as C, and 1 is an n × 1 column vector of ones. Note that (σ2C)−1 is the
matrix inverse of the matrix σ2C

As an example, with the mammal data, we can calculate the likelihood for a
model with parameter values σ2 = 1 and z̄(0) = 0. We need to work with
ln-likelihoods (lnL), both because the value here is so small and to facilitate
future calculations, so: lnL(x|z̄(0), σ2, C) = −116.2.

To find the ML estimates of our model parameters, we need to find the parameter
values that maximize that function. One (not very efficient) way to do this is
to calculate the likelihood across a wide range of parameter values. One can
then visualize the resulting likelihood surface and identify the maximum of the
likelihood function. For example, the likelihood surface for the mammal body
size data given a Brownian motion model is shown in Figure 4.3. Note that this
surface has a peak around σ2 = 0.09 and z̄(0) = 4. Inspecting the matrix of ML
values, we find the highest ln-likelihood (-78.05) at σ2 = 0.089 and z̄(0) = 4.65.

The calculation described above is inefficient, because we have to calculate like-
lihoods at a wide range of parameter values that are far from the optimum. A
better strategy involves the use of optimization algorithms, a well-developed
field of mathematical analysis (Nocedal and Wright 2006). These algorithms
differ in their details, but we can illustrate how they work with a general ex-
ample. Imagine that you are near Mt. St. Helens, and you are tasked with
finding the peak of that mountain. It is foggy, but you can see the area around
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Figure 4.3. Likelihood surface for the evolution of mammalian body mass using
the data from Garland (1992). Image by the author, can be reused under a
CC-BY-4.0 license.
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your feet and have an accurate altimeter. One strategy is to simply look at the
slope of the mountain where you are standing, and climb uphill. If the slope is
steep, you probably still are far from the top, and should climb fast; if the slope
is shallow, you might be near the top of the mountain. It may seem obvious
that this will get you to a local peak, but perhaps not the highest peak of Mt.
St. Helens. Mathematical optimization schemes have this potential difficulty as
well, but use some tricks to jump around in parameter space and try to find the
overall highest peak as they climb. Details of actual optimization algorithms are
beyond the scope of this book; for more information, see Nocedal and Wright
(2006).

One simple example is based on Newton’s method of optimization [as imple-
mented, for example, by the r function nlm()]. We can use this algorithm to
quickly find accurate ML estimates2.

Using optimization algorithms we find a ML solution at σ̂2
ML = 0.08804487

and ˆ̄z(0) = 4.640571, with lnL = −78.04942. Importantly, the solution can be
found with only 10 likelihood calculations; this is the value of good optimization
algorithms. I have plotted the path through parameter space taken by Newton’s
method when searching for the optimum in Figure 4.4. Notice two things: first,
that the function starts at some point and heads uphill on the likelihood surface
until an optimum is found; and second, that this calculation requires many fewer
steps (and much less time) than calculating the likelihood for a wide range of
parameter values.

Using an optimization algorithm also has the added benefit of providing (ap-
proximate) confidence intervals for parameter values based on the Hessian of
the likelihood surface. This approach assumes that the shape of the likelihood
surface in the immediate vicinity of the peak can be approximated by a quadratic
function, and uses the curvature of that function, as determined by the Hessian,
to approximate the standard errors of parameter values (Burnham and Ander-
son 2003). If the surface is strongly peaked, the SEs will be small, while if the
surface is very broad, the SEs will be large. For example, the likelihood surface
around the ML values for mammal body size evolution has a Hessian of:

(eq. 4.6)

H =
[

−314.6 −0.0026
−0.0026 −0.99

]
This gives standard errors of 0.13 (for σ̂2

ML) and 0.72 [for ˆ̄z(0)]. If we assume the
error around these estimates is approximately normal, we can create confidence
estimates by adding and subtracting twice the standard error. We then obtain
95% CIs of 0.06 − 0.11 (for σ̂2

ML) and 3.22 − 6.06 [for ˆ̄z(0)].

The danger in optimization algorithms is that one can sometimes get stuck on
local peaks. More elaborate algorithms repeated for multiple starting points
can help solve this problem, but are not needed for simple Brownian motion
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Figure 4.4. Likelihood surface for the evolution of mammalian body mass using
the data from Garland (1992). Shown here is the path taken by the optimization
algorithm to find the peak of the likelihood surface. The last five steps of this
ten-step algorithm are too close together to be seen in this figure. Image by the
author, can be reused under a CC-BY-4.0 license.
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on a tree as considered here. Numerical optimization is a difficult problem in
phylogenetic comparative methods, especially for software developers.

In the particular case of fitting Brownian motion to trees, it turns out that
even our fast algorithm for optimization was unnecessary. In this case, the
maximum-likelihood estimate for each of these two parameters can be calculated
analytically (O’Meara et al. 2006).

(eq. 4.7)
ˆ̄z(0) = (1⊺C−11)−1(1⊺C−1x)

and:

(eq. 4.8)

σ̂2
ML = (x − ˆ̄z(0)1)⊺C−1(x − ˆ̄z(0)1)

n

where n is the number of taxa in the tree, C is the n × n variance-covariance
matrix under Brownian motion for tip characters given the phylogenetic tree, x
is an n × 1 vector of trait values for tip species in the tree, 1 is an n × 1 column
vector of ones, ˆ̄z(0) is the estimated root state for the character, and σ̂2

ML is the
estimated net rate of evolution.

Applying this approach to mammal body size, we obtain estimates that are
exactly the same as our results from numeric optimization: σ̂2

ML = 0.088 and
ˆ̄z(0) = 4.64.

Equation (4.8) is biased, and will consistently estimate rates of evolution that are
a little too small; an unbiased version based on restricted maximum likelihood
(REML) and used by Garland (1992) and others is:

(eq. 4.9)

σ̂2
REML = (x − ˆ̄z(0)1)⊺C−1(x − ˆ̄z(0)1)

n − 1

This correction changes our estimate of the rate of body size in mammals from
σ̂2

ML = 0.088 to σ̂2
REML = 0.090. Equation 4.8 is exactly identical to the

estimated rate of evolution calculated using the average squared independent
contrast, described above; that is, σ̂2

P IC = σ̂2
REML. In fact, PICs are a formula-

tion of a REML model. The “restricted” part of REML refers to the fact that
these methods calculate likelihoods based on a transformed set of data where
the effect of nuisance parameters has been removed. In this case, the nuisance
parameter is the estimated root state ˆ̄z(0) 3.

For the mammal body size example, we can further explore the difference be-
tween REML and ML in terms of statistical confidence intervals using likelihoods
based on the contrasts. We assume, again, that the contrasts are all drawn from
a normal distribution with mean 0 and unknown variance. If we again use New-
ton’s method for optimization, we find a maximum REML log-likelihood of -10.3
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at σ̂2
REML = 0.090. This returns a 1 × 1 matrix for the Hessian with a value of

2957.8, corresponding to a SE of 0.018. This slightly larger SE corresponds to
95% CI for σ̂2

REML of 0.05 − 0.13.

In the context of comparative methods, REML has two main advantages. First,
PICs treat the root state of the tree as a nuisance parameter. We typically have
very little information about this root state, so that can be an advantage of
the REML approach. Second, PICs are easy to calculate for very large phyloge-
netic trees because they do not require the construction (or inversion!) of any
large variance-covariance matrices. This is important for big phylogenetic trees.
Imagine that we had a phylogenetic tree of all vertebrates (~60,000 species) and
wanted to calculate the rate of body size evolution. To use standard maximum
likelihood, we have to calculate C, a matrix with 60, 000 × 60, 000 = 3.6 billion
entries, and invert it to calculate C−1. To calculate PICs, by contrast, we only
have to carry out on the order of 120,000 operations. Thankfully, there are
now pruning algorithms to quickly calculate likelihoods for large trees under a
variety of different models (see, e.g., FitzJohn 2012; Freckleton 2012; and Ho
and Ané 2014).

Section 4.4: Bayesian approach to evolutionary rates

Finally, we can also use a Bayesian approach to fit Brownian motion models to
data and to estimate the rate of evolution. This approach differs from the ML
approach in that we will use explicit priors for parameter values, and then run
an MCMC to estimate posterior distributions of parameter estimates. To do
this, we will modify the basic algorithm for Bayesian MCMC (see Chapter 2)
as follows:

1. Sample a set of starting parameter values, σ2 and z̄(0) from their prior dis-
tributions. For this example, we can set our prior distribution as uniform
between 0 and 0.5 for σ2 and uniform from 0 to 10 for z̄(0).

2. Given the current parameter values, select new proposed parameter values
using the proposal density Q(p′|p). For both parameter values, we will use
a uniform proposal density with width wp, so that: (eq. 4.10)

Q(p′|p) ∼ U(p − wp

2
, p + wp

2
)

3. Calculate three ratios:

• The prior odds ratio, Rprior. This is the ratio of the probability of
drawing the parameter values p and p from the prior. Since our priors
are uniform, this is always 1.

• The proposal density ratio, Rproposal. This is the ratio of probability
of proposals going from p to p and the reverse. We have already
declared a symmetrical proposal density, so that Q(p′|p) = Q(p|p′)
and Rproposal = 1.
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• The likelihood ratio, Rlikelihood. This is the ratio of probabilities of
the data given the two different parameter values. We can calculate
these probabilities from equation 4.5 above. (eq. 4.11)

Rlikelihood = L(p′|D)
L(p|D)

= P (D|p′)
P (D|p)

4. Find the acceptance ratio, Raccept, which is product of the prior odds,
proposal density ratio, and the likelihood ratio. In this case, both the
prior odds and proposal density ratios are 1, so Raccept = Rlikelihood.

5. Draw a random number x from a uniform distribution between 0 and 1.
If x < Raccept, accept the proposed value of both parameters; otherwise
reject, and retain the current value of the two parameters.

6. Repeat steps 2-5 a large number of times.

Using the mammal body size data, I ran an MCMC with 10,000 generations,
discarding the first 1000 as burn-in. Sampling every 10 generations, I obtain
parameter estimates of σ̂2

bayes = 0.10 (95% credible interval: 0.066 − 0.15) and
ˆ̄z(0) = 3.5 (95% credible interval: 2.3 − 5.3; Figure 4.5).

Note that the parameter estimates from all three approaches (REML, ML, and
Bayesian) were similar. Even the confidence/credible intervals varied a little bit
but were of about the same size in all three cases. All of the approaches above are
mathematically related and should, in general, return similar results. One might
place higher value on the Bayesian credible intervals over confidence intervals
from the Hessian of the likelihood surface, for two reasons: first, the Hessian
leads to an estimate of the CI under certain conditions that may or may not
be true for your analysis; and second, Bayesian credible intervals reflect overall
uncertainty better than ML confidence intervals (see chapter 2).

Section 4.5: Summary

By fitting a Brownian motion model to phylogenetic comparative data, one can
estimate the rate of evolution of a single character. In this chapter, I demon-
strated three approaches to estimating that rate: PICs, maximum likelihood,
and Bayesian MCMC. In the next chapter, we will discuss other models of evo-
lution that can be fit to continuous characters on trees.

Footnotes

1: Throughout this chapter, when I say “rate” I will mean the Brownian motion
parameter σ2. This is a little different from “traditional” estimates of evolution-
ary rate, like those estimated by paleontologists. For example, one might have
measurements of trait in a series of fossils representing an evolutionary lineage
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Figure 4.5. Bayesian analysis of body size evolution in mammals. Figure shows
the likelihood profile (A) and posterior distributions for model parameters σ̂2

bayes

(B) and ˆ̄z(0) (C). Image by the author, can be reused under a CC-BY-4.0 license.
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sampled at different time periods. By calculating the amount of change over
a given time interval, one can estimate an evolutionary rate. These rates can
be expressed as Darwins (defined as the log-difference in trait values divided by
time in years) or Haldanes (defined as the difference in trait values scaled by
their standard deviations divided by time in generations). Both types of rates
have been calculated from both fossil data and contemporary time-series data
on evolution from both islands and lab experiments. Such rates best capture
evolutionary trends, where the mean value of a trait is changing in a consistent
way through time (for more information see review in Harmon 2014). Rates
estimated by Brownian motion are a different type of “rate”, and some care
must be taken to compare the two (see, e.g., Gingerich 1983).

2: Note that there are more complicated optimization algorithms that are useful
for more difficult problems in comparative methods. In the case presented here,
where the surface is smooth and has a single peak, almost any algorithm will
work.

3:PICs are a transformation of the original data in which all information about
the root state has been removed; our idea of what that root state might be
has no effect on calculations using PICs. One can calculate the likelihood for
the PIC REML method by assuming all of the standardized PICs are drawn
from a normal distribution (eq. 4.5) with mean 0 and variance σ̂2

REML (eq.
4.8). Alternatively, one can estimate the variance of the PICs directly, keeping
in mind that one must use a mean of zero (eq. 4.4). These two methods give
exactly the same results.
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