Chapter 2: Fitting Statistical Models to Data

Section 2.1: Introduction

Evolution is the product of a thousand stories. Individual organisms are born,
reproduce, and die. The net result of these individual life stories over broad
spans of time is evolution. At first glance, it might seem impossible to model
this process over more than one or two generations. And yet scientific progress
relies on creating simple models and confronting them with data. How can we
evaluate models that consider evolution over millions of generations?

There is a solution: we can rely on the properties of large numbers to create
simple models that represent, in broad brushstrokes, the types of changes that
take place over evolutionary time. We can then compare these models to data
in ways that will allow us to gain insights into evolution.

This book is about constructing and testing mathematical models of evolution.
In my view the best comparative approaches have two features. First, the most
useful methods emphasize parameter estimation over test statistics and P-values.
Ideal methods fit models that we care about and estimate parameters that have
a clear biological interpretation. To be useful, methods must also recognize and
quantify uncertainty in our parameter estimates. Second, many useful methods
involve model selection, the process of using data to objectively select the best
model from a set of possibilities. When we use a model selection approach,
we take advantage of the fact that patterns in empirical data sets will reject
some models as implausible and support the predictions of others. This sort of
approach can be a nice way to connect the results of a statistical analysis to a
particular biological question.

In this chapter, I will first give a brief overview of standard hypothesis testing
in the context of phylogenetic comparative methods. However, standard hy-
pothesis testing can be limited in complex, real-world situations, such as those
encountered commonly in comparative biology. I will then review two other
statistical approaches, maximum likelihood and Bayesian analysis, that are of-
ten more useful for comparative methods. This latter discussion will cover both
parameter estimation and model selection.

All of the basic statistical approaches presented here will be applied to evolution-
ary problems in later chapters. It can be hard to understand abstract statistical
concepts without examples. So, throughout this part of the chapter, I will refer
back to a simple example.

A common simple example in statistics involves flipping coins. To fit
with the theme of this book, however, I will change this to flipping
a lizard (needless to say, do not try this at home!). Suppose you
have a lizard with two sides, “heads” and “tails.” You want to flip
the lizard to help make decisions in your life. However, you do not



know if this is a fair lizard, where the probability of obtaining heads
is 0.5, or not. Perhaps, for example, lizards have a cat-like ability to
right themselves when flipped. As an experiment, you flip the lizard
100 times, and obtain heads 63 of those times. Thus, 63 heads out
of 100 lizard flips is your data; we will use model comparisons to try
to see what these data tell us about models of lizard flipping.

Section 2.2: Standard statistical hypothesis testing

Standard hypothesis testing approaches focus almost entirely on rejecting null
hypotheses. In the framework (usually referred to as the frequentist approach
to statistics) one first defines a null hypothesis. This null hypothesis represents
your expectation if some pattern, such as a difference among groups, is not
present, or if some process of interest were not occurring. For example, perhaps
you are interested in comparing the mean body size of two species of lizards,
an anole and a gecko. Our null hypothesis would be that the two species do
not differ in body size. The alternative, which one can conclude by rejecting
that null hypothesis, is that one species is larger than the other. Another
example might involve investigating two variables, like body size and leg length,
across a set of lizard species’. Here the null hypothesis would be that there is
no relationship between body size and leg length. The alternative hypothesis,
which again represents the situation where the phenomenon of interest is actually
occurring, is that there is a relationship with body size and leg length. For
frequentist approaches, the alternative hypothesis is always the negation of the
null hypothesis; as you will see below, other approaches allow one to compare
the fit of a set of models without this restriction and choose the best amongst
them.

The next step is to define a test statistic, some way of measuring the patterns
in the data. In the two examples above, we would consider test statistics that
measure the difference in mean body size among our two species of lizards, or
the slope of the relationship between body size and leg length, respectively. One
can then compare the value of this test statistic in the data to the expectation of
this test statistic under the null hypothesis. The relationship between the test
statistic and its expectation under the null hypothesis is captured by a P-value.
The P-value is the probability of obtaining a test statistic at least as extreme
as the actual test statistic in the case where the null hypothesis is true. You
can think of the P-value as a measure of how probable it is that you would
obtain your data in a universe where the null hypothesis is true. In other words,
the P-value measures how probable it is under the null hypothesis that you
would obtain a test statistic at least as extreme as what you see in the data. In
particular, if the P-value is very large, say P = 0.94, then it is extremely likely
that your data are compatible with this null hypothesis.

If the test statistic is very different from what one would expect under the null
hypothesis, then the P-value will be small. This means that we are unlikely to



obtain the test statistic seen in the data if the null hypothesis were true. In that
case, we reject the null hypothesis as long as P is less than some value chosen
in advance. This value is the significance threshold, «, and is almost always
set to a = 0.05. By contrast, if that probability is large, then there is nothing
“special” about your data, at least from the standpoint of your null hypothesis.
The test statistic is within the range expected under the null hypothesis, and we
fail to reject that null hypothesis. Note the careful language here — in a standard
frequentist framework, you never accept the null hypothesis, you simply fail to
reject it.

Getting back to our lizard-flipping example, we can use a frequentist approach.
In this case, our particular example has a name; this is a binomial test, which
assesses whether a given event with two outcomes has a certain probability of
success. In this case, we are interested in testing the null hypothesis that our
lizard is a fair flipper; that is, that the probability of heads py = 0.5. The
binomial test uses the number of “successes” (we will use the number of heads,
H = 63) as a test statistic. We then ask whether this test statistic is either
much larger or much smaller than we might expect under our null hypothesis.
So, our null hypothesis is that py = 0.5; our alternative, then, is that py takes
some other value: pg # 0.5.

To carry out the test, we first need to consider how many “successes” we should
expect if the null hypothesis were true. We consider the distribution of our
test statistic (the number of heads) under our null hypothesis (pg = 0.5). This
distribution is a binomial distribution (Figure 2.1).

We can use the known probabilities of the binomial distribution to calculate
our P-value. We want to know the probability of obtaining a result at least as
extreme as our data when drawing from a binomial distribution with parameters
p = 0.5 and n = 100. We calculate the area of this distribution that lies to the
right of 63. This area, P = 0.003, can be obtained either from a table, from
statistical software, or by using a relatively simple calculation. The value, 0.003,
represents the probability of obtaining at least 63 heads out of 100 trials with
pg = 0.5. This number is the P-value from our binomial test. Because we only
calculated the area of our null distribution in one tail (in this case, the right,
where values are greater than or equal to 63), then this is actually a one-tailed
test, and we are only considering part of our null hypothesis where py > 0.5.
Such an approach might be suitable in some cases, but more typically we need
to multiply this number by 2 to get a two-tailed test; thus, P = 0.006. This
two-tailed P-value of 0.006 includes the possibility of results as extreme as our
test statistic in either direction, either too many or too few heads. Since P <
0.05, our chosen « value, we reject the null hypothesis, and conclude that we
have an unfair lizard.

In biology, null hypotheses play a critical role in many statistical analyses. So
why not end this chapter now? One issue is that biological null hypotheses are
almost always uninteresting. They often describe the situation where patterns
in the data occur only by chance. However, if you are comparing living species



Null hypothesis:
pH=0.5

Alternative
hypothesis:
pn = 0.5
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Figure 2.1. The unfair lizard. We use the null hypothesis to generate a null
distribution for our test statistic, which in this case is a binomial distribution
centered around 50. We then look at our test statistic and calculate the prob-
ability of obtaining a result at least as extreme as this value. Image by the
author, can be reused under a CC-BY-4.0 license.
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to each other, there are almost always some differences between them. In fact,
for biology, null hypotheses are quite often obviously false. For example, two
different species living in different habitats are not identical, and if we measure
them enough we will discover this fact. From this point of view, both outcomes
of a standard hypothesis test are unenlightening. One either rejects a silly hy-
pothesis that was probably known to be false from the start, or one “fails to
reject” this null hypothesis?. There is much more information to be gained by
estimating parameter values and carrying out model selection in a likelihood
or Bayesian framework, as we will see below. Still, frequentist statistical ap-
proaches are common, have their place in our toolbox, and will come up in
several sections of this book.

One key concept in standard hypothesis testing is the idea of statistical error.
Statistical errors come in two flavors: type I and type II errors. Type I errors
occur when the null hypothesis is true but the investigator mistakenly rejects it.
Standard hypothesis testing controls type I errors using a parameter, «, which
defines the accepted rate of type I errors. For example, if a = 0.05, one should
expect to commit a type I error about 5% of the time. When multiple standard
hypothesis tests are carried out, investigators often “correct” their P-values
using Bonferroni correction. If you do this, then there is only a 5% chance of a
single type I error across all of the tests being considered. This singular focus
on type I errors, however, has a cost. One can also commit type II errors, when
the null hypothesis is false but one fails to reject it. The rate of type II errors in
statistical tests can be extremely high. While statisticians do take care to create
approaches that have high power, traditional hypothesis testing usually fixes
type I errors at 5% while type II error rates remain unknown. There are simple
ways to calculate type II error rates (e.g. power analyses) but these are only
rarely carried out. Furthermore, Bonferroni correction dramatically increases
the type II error rate. This is important because — as stated by Perneger (1998)
— “.. type II errors are no less false than type I errors.” This extreme emphasis
on controlling type I errors at the expense of type II errors is, to me, the main
weakness of the frequentist approach?®.

I will cover some examples of the frequentist approach in this book, mainly
when discussing traditional methods like phylogenetic independent contrasts
(PICs). Also, one of the model selection approaches used frequently in this
book, likelihood ratio tests, rely on a standard frequentist set-up with null and
alternative hypotheses.

However, there are two good reasons to look for better ways to do compara-
tive statistics. First, as stated above, standard methods rely on testing null
hypotheses that — for evolutionary questions - are usually very likely, a priori,
to be false. For a relevant example, consider a study comparing the rate of
speciation between two clades of carnivores. The null hypothesis is that the two
clades have exactly equal rates of speciation — which is almost certainly false,
although we might question how different the two rates might be. Second, in
my opinion, standard frequentist methods place too much emphasis on P-values



and not enough on the size of statistical effects. A small P-value could reflect
either a large effect or very large sample sizes or both.

In summary, frequentist statistical methods are common in comparative statis-
tics but can be limiting. I will discuss these methods often in this book, mainly
due to their prevalent use in the field. At the same time, we will look for
alternatives whenever possible.

Section 2.3: Maximum likelihood
Section 2.3a: What is a likelihood?

Since all of the approaches described in the remainer of this chapter involve
calculating likelihoods, I will first briefly describe this concept. A good general
review of likelihood is Edwards (1992). Likelihood is defined as the probability,
given a model and a set of parameter values, of obtaining a particular set of data.
That is, given a mathematical description of the world, what is the probability
that we would see the actual data that we have collected?

To calculate a likelihood, we have to consider a particular model that may have
generated the data. That model will almost always have parameter values that
need to be specified. We can refer to this specified model (with particular
parameter values) as a hypothesis, H. The likelihood is then:

(eq. 2.1)
L(H|D) = Pr(D|H)

Here, L and Pr stand for likelihood and probability, D for the data, and H for the
hypothesis, which again includes both the model being considered and a set of
parameter values. The | symbol stands for “given,” so equation 2.1 can be read
as “the likelihood of the hypothesis given the data is equal to the probability
of the data given the hypothesis.” In other words, the likelihood represents the
probability under a given model and parameter values that we would obtain the
data that we actually see.

For any given model, using different parameter values will generally change the
likelihood. As you might guess, we favor parameter values that give us the
highest probability of obtaining the data that we see. One way to estimate
parameters from data, then, is by finding the parameter values that maximize
the likelihood; that is, the parameter values that give the highest likelihood, and
the highest probability of obtaining the data. These estimates are then referred
to as maximum likelihood (ML) estimates. In an ML framework, we suppose
that the hypothesis that has the best fit to the data is the one that has the
highest probability of having generated that data.

For the example above, we need to calculate the likelihood as the probability of
obtaining heads 63 out of 100 lizard flips, given some model of lizard flipping. In



general, we can write the likelihood for any combination of H “successes” (flips
that give heads) out of n trials. We will also have one parameter, pg, which will
represent the probability of “success,” that is, the probability that any one flip
comes up heads. We can calculate the likelihood of our data using the binomial
theorem:

(eq. 2.2)

L(H|D) = Pr(Dl|p) = (H)pg(l — )t

In the example given, n = 100 and H = 63, so:
(eq. 2.3)
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Likelihood, L(H|D)
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Figure 2.2. Likelihood surface for the parameter py, given a coin that has been

flipped as heads 63 times out of 100. Image by the author, can be reused under
a CC-BY-4.0 license.
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We can make a plot of the likelihood, L, as a function of py (Figure 2.2). When
we do this, we see that the maximum likelihood value of py, which we can call
PH,is at pgy = 0.63. This is the “brute force” approach to finding the maximum
likelihood: try many different values of the parameters and pick the one with
the highest likelihood. We can do this much more efficiently using numerical
methods as described in later chapters in this book.

We could also have obtained the maximum likelihood estimate for py through
differentiation. This problem is much easier if we work with the In-likelihood
rather than the likelihood itself (note that whatever value of py that maximizes
the likelihood will also maximize the In-likelihood, because the log function is
strictly increasing). So:

(eq. 2.4)
InL=1In (Z) +Hlnpg 4+ (n—H)In(1 —ppy)

Note that the natural log (In) transformation changes our equation from a power
function to a linear function that is easy to solve. We can differentiate:

(eq. 2.5)
dinL H (n—H)

dpg pu (1 —pu)

The maximum of the likelihood represents a peak, which we can find by setting

the derivative ddg‘HL to zero. We then find the value of py that solves that

equation, which will be our estimate pg. So we have:

(eq. 2.6)
VTR T
P? 1-pn _ n—H
PH R - }—ﬁH
H(l—-py) = pun—H)
H—-Hpy = npy— Hpy
H = npH
ﬁH = H/TL

Notice that, for our simple example, H/n = 63/100 = 0.63, which is exactly
equal to the maximum likelihood from figure 2.2.

Maximum likelihood estimates have many desirable statistical properties. It
is worth noting, however, that they will not always return accurate parameter
estimates, even when the data is generated under the actual model we are
considering. In fact, ML parameters can sometimes be biased. To understand
what this means, we need to formally introduce two new concepts: bias and
precision. Imagine that we were to simulate datasets under some model A with
parameter a. For each simulation, we then used ML to estimate the parameter a
for the simulated data. The precision of our ML estimate tells us how different,
on average, each of our estimated parameters a; are from one another. Precise
estimates are estimated with less uncertainty. Bias, on the other hand, measures



how close our estimates d; are to the true value a. If our ML parameter estimate
is biased, then the average of the a; will differ from the true value a. It is not
uncommon for ML estimates to be biased in a way that depends on sample size,
so that the estimates get closer to the truth as sample size increases, but can be
quite far off in a particular direction when the number of data points is small
compared to the number of parameters being estimated.

In our example of lizard flipping, we estimated a parameter value of py = 0.63.
For the particular case of estimating the parameter of a binomial distribution,
our ML estimate is known to be unbiased. And this estimate is different from
0.5 — which was our expectation under the null hypothesis. So is this lizard fair?
Or, alternatively, can we reject the null hypothesis that pgy = 0.57 To evaluate
this, we need to use model selection.

Section 2.3b: The likelihood ratio test

Model selection involves comparing a set of potential models and using some
criterion to select the one that provides the “best” explanation of the data.
Different approaches define “best” in different ways. I will first discuss the
simplest, but also the most limited, of these techniques, the likelihood ratio
test. Likelihood ratio tests can only be used in one particular situation: to
compare two models where one of the models is a special case of the other.
This means that model A is exactly equivalent to the more complex model B
with parameters restricted to certain values. We can always identify the simpler
model as the model with fewer parameters. For example, perhaps model B has
parameters x, y, and z that can take on any values. Model A is the same as
model B but with parameter z fixed at 0. That is, A is the special case of B
when parameter z = 0. This is sometimes described as model A is nested within
model B, since every possible version of model A is equal to a certain case of
model B, but model B also includes more possibilities.

For likelihood ratio tests, the null hypothesis is always the simpler of the two
models. We compare the data to what we would expect if the simpler (null)
model were correct.

For example, consider again our example of flipping a lizard. One model is that
the lizard is “fair:” that is, that the probability of heads is equal to 1/2. A
different model might be that the probability of heads is some other value p,
which could be 1/2, 1/3, or any other value between 0 and 1. Here, the latter
(complex) model has one additional parameter, py, compared to the former
(simple) model; the simple model is a special case of the complex model when
For such nested models, one can calculate the likelihood ratio test statistic as

(eq. 2.7)
A:2~lnﬂ =2 -(InL; —InLy)
Ly



Here, A is the likelihood ratio test statistic, Lo the likelihood of the more
complex (parameter rich) model, and L, the likelihood of the simpler model.
Since the models are nested, the likelihood of the complex model will always
be greater than or equal to the likelihood of the simple model. This is a direct
consequence of the fact that the models are nested. If we find a particular
likelihood for the simpler model, we can always find a likelihood equal to that
for the complex model by setting the parameters so that the complex model is
equivalent to the simple model. So the maximum likelihood for the complex
model will either be that value, or some higher value that we can find through
searching the parameter space. This means that the test statistic A will never
be negative. In fact, if you ever obtain a negative likelihood ratio test statistic,
something has gone wrong — either your calculations are wrong, or you have not
actually found ML solutions, or the models are not actually nested.

To carry out a statistical test comparing the two models, we compare the test
statistic A to its expectation under the null hypothesis. When sample sizes
are large, the null distribution of the likelihood ratio test statistic follows a
chi-squared (x?) distribution with degrees of freedom equal to the difference
in the number of parameters between the two models. This means that if
the simpler hypothesis were true, and one carried out this test many times on
large independent datasets, the test statistic would approximately follow this
x? distribution. To reject the simpler (null) model, then, one compares the test
statistic with a critical value derived from the appropriate x? distribution. If
the test statistic is larger than the critical value, one rejects the null hypothesis.
Otherwise, we fail to reject the null hypothesis. In this case, we only need to
consider one tail of the x? test, as every deviation from the null model will push
us towards higher A values and towards the right tail of the distribution.

For the lizard flip example above, we can calculate the In-likelihood under a
hypothesis of pg = 0.5 as:

(eq. 2.8)
InL; = In(3%) 463 0.5+ (100 — 63) - In (1 — 0.5)
In Ll = =592

We can compare this to the likelihood of our maximum-likelihood estimate :
(eq. 2.9)

In Ly In (190) 4 63 - In0.63 + (100 — 63) - In (1 — 0.63)
InL, = —250

We then calculate the likelihood ratio test statistic:
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(eq. 2.10)

= 2'(1HL271HL1)
= 2.(—2.50--5.92)
= 6.84

> > >

If we compare this to a x? distribution with one d.f., we find that P = 0.009.
Because this P-value is less than the threshold of 0.05, we reject the null hy-
pothesis, and support the alternative. We conclude that this is not a fair lizard.
As you might expect, this result is consistent with our answer from the bino-
mial test in the previous section. However, the approaches are mathematically
different, so the two P-values are not identical.

Although described above in terms of two competing hypotheses, likelihood ratio
tests can be applied to more complex situations with more than two competing
models. For example, if all of the models form a sequence of increasing com-
plexity, with each model a special case of the next more complex model, one
can compare each pair of hypotheses in sequence, stopping the first time the
test statistic is non-significant. Alternatively, in some cases, hypotheses can be
placed in a bifurcating choice tree, and one can proceed from simple to complex
models down a particular path of paired comparisons of nested models. This
approach is commonly used to select models of DNA sequence evolution (Posada
and Crandall 1998).

Section 2.3c: The Akaike information criterion (AIC)

You might have noticed that the likelihood ratio test described above has some
limitations. Especially for models involving more than one parameter, ap-
proaches based on likelihood ratio tests can only do so much. For example,
one can compare a series of models, some of which are nested within others,
using an ordered series of likelihood ratio tests. However, results will often de-
pend strongly on the order in which tests are carried out. Furthermore, often
we want to compare models that are not nested, as required by likelihood ratio
tests. For these reasons, another approach, based on the Akaike Information
Criterion (AIC), can be useful.

The AIC value for a particular model is a simple function of the likelihood L
and the number of parameters k:

(eq. 2.11)
AIC =2k —2inL

This function balances the likelihood of the model and the number of parame-
ters estimated in the process of fitting the model to the data. One can think of
the AIC criterion as identifying the model that provides the most efficient way
to describe patterns in the data with few parameters. However, this shorthand
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description of AIC does not capture the actual mathematical and philosoph-
ical justification for equation (2.11). In fact, this equation is not arbitrary;
instead, its exact trade-off between parameter numbers and log-likelihood dif-
ference comes from information theory (for more information, see Burnham and

Anderson 2003, Akaike (1998)).

The AIC equation (2.11) above is only valid for quite large sample sizes relative
to the number of parameters being estimated (for n samples and k parameters,
n/k > 40). Most empirical data sets include fewer than 40 independent data
points per parameter, so a small sample size correction should be employed:

(eq. 2.12)
2%(k + 1)

AICs = AIC + ————=
= +nfk71

This correction penalizes models that have small sample sizes relative to the
number of parameters; that is, models where there are nearly as many parame-
ters as data points. As noted by Burnham and Anderson (2003), this correction
has little effect if sample sizes are large, and so provides a robust way to correct
for possible bias in data sets of any size. I recommend always using the small
sample size correction when calculating AIC values.

To select among models, one can then compare their AIC,. scores, and choose
the model with the smallest value. It is easier to make comparisons in AIC,
scores between models by calculating the difference, AAIC.. For example, if
you are comparing a set of models, you can calculate AAIC, for model i as:

(eq. 2.13)
AAIC,, = AIC,, — AIC.

Cmin

where AIC,, is the AIC, score for model i and AIC.
score across all of the models.

is the minimum AIC,

min

As a broad rule of thumb for comparing AIC values, any model with a AAIC,,
of less than four is roughly equivalent to the model with the lowest AIC,. value.
Models with AAIC,, between 4 and 8 have little support in the data, while any
model with a AAIC,, greater than 10 can safely be ignored.

Additionally, one can calculate the relative support for each model using Akaike
weights. The weight for model ¢ compared to a set of competing models is
calculated as:

(eq. 2.14)
e—AAIC, /2

Wi = =7~ 75
Zi efAAICCi/2

The weights for all models under consideration sum to 1, so the w; for each
model can be viewed as an estimate of the level of support for that model in
the data compared to the other models being considered.
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Returning to our example of lizard flipping, we can calculate AIC, scores for

our two models as follows:

(eq. 2.15)

AIC,
AIC,
AICs
AICs

2k1 —2lnL; =2-0—2--5.92
11.8

2kg —2lnLy =2-1—-2--2.50
7.0

Our example is a bit unusual in that model one has no estimated parameters;
this happens sometimes but is not typical for biological applications. We can
correct these values for our sample size, which in this case is n = 100 lizard
flips:

(eq. 2.16)
ALC,, AIC, + alutl
AIC,, = 118+ 200+D
AIC, = 118
AIC,, = AIC,+ 22let)
AIC,, = 7.0+ 204D
AIC,, = 70

Notice that, in this particular case, the correction did not affect our AIC values,
at least to one decimal place. This is because the sample size is large relative
to the number of parameters. Note that model 2 has the smallest AIC, score
and is thus the model that is best supported by the data. Noting this, we can
now convert these AIC, scores to a relative scale:

(eq. 2.17)
AAIC,, = AIC,, — AICcpyin
11.8-7.0
= 4.8
AAIC.,, = AIC,., — AICcnyin
= 70-7.0
=0

Note that the AAIC,, for model 1 is greater than four, suggesting that this
model (the “fair” lizard) has little support in the data. This is again consistent
with all of the results that we’ve obtained so far using both the binomial test

13



and the likelihood ratio test. Finally, we can use the relative AICc scores to
calculate Akaike weights:

(eq. 2.18)
Zi e*Al/Q — 67A1/2 + 67A2/2
— e—48/2 4 (—0/2

0.09+1
1.09

e~ AAICC /2

w1 = ¥ -BArc /2

b

9
ol

|
O
23

—AAIC,, /2
_ e 2
w2 = —AAIC;; /2

Our results are again consistent with the results of the likelihood ratio test. The
relative likelihood of an unfair lizard is 0.92, and we can be quite confident that
our lizard is not a fair flipper.

AIC weights are also useful for another purpose: we can use them to get model-
averaged parameter estimates. These are parameter estimates that are com-
bined across different models proportional to the support for those models. As
a thought example, imagine that we are considering two models, A and B, for
a particular dataset. Both model A and model B have the same parameter p,
and this is the parameter we are particularly interested in. In other words, we
do not know which model is the best model for our data, but what we really
need is a good estimate of p. We can do that using model averaging. If model
A has a high AIC weight, then the model-averaged parameter estimate for p
will be very close to our estimate of p under model A; however, if both mod-
els have about equal support then the parameter estimate will be close to the
average of the two different estimates. Model averaging can be very useful in
cases where there is a lot of uncertainty in model choice for models that share
parameters of interest. Sometimes the models themselves are not of interest,
but need to be considered as possibilities; in this case, model averaging lets us
estimate parameters in a way that is not as strongly dependent on our choice
of models.
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Section 2.4: Bayesian statistics
Section 2.4a: Bayes Theorem

Recent years have seen tremendous growth of Bayesian approaches in recon-
structing phylogenetic trees and estimating their branch lengths. Although
there are currently only a few Bayesian comparative methods, their number
will certainly grow as comparative biologists try to solve more complex problems.
In a Bayesian framework, the quantity of interest is the posterior probability,
calculated using Bayes’ theorem:

(eq. 2.19)

Pr(D|H) - Pr(H)

Pr(H|D) = rD)

The benefit of Bayesian approaches is that they allow us to estimate the prob-
ability that the hypothesis is true given the observed data, Pr(H|D). This
is really the sort of probability that most people have in mind when they are
thinking about the goals of their study. However, Bayes theorem also reveals
a cost of this approach. Along with the likelihood, Pr(D|H), one must also
incorporate prior knowledge about the probability that any given hypothesis is
true - Pr(H). This represents the prior belief that a hypothesis is true, even
before consideration of the data at hand. This prior probability must be explic-
itly quantified in all Bayesian statistical analyses. In practice, scientists often
seek to use “uninformative” priors that have little influence on the posterior dis-
tribution - although even the term “uninformative” can be confusing, because
the prior is an integral part of a Bayesian analysis. The term Pr(D) is also an
important part of Bayes theorem, and can be calculated as the probability of
obtaining the data integrated over the prior distributions of the parameters:

(eq. 2.20)

Pr(D) = /H Pr(H|D)Pr(H)dH

However, Pr(D) is constant when comparing the fit of different models for a
given data set and thus has no influence on Bayesian model selection under most
circumstances (and all the examples in this book).

In our example of lizard flipping, we can do an analysis in a Bayesian framework.
For model 1, there are no free parameters. Because of this, Pr(H) = 1 and
Pr(D|H) = P(D), so that Pr(H|D) = 1. This may seem strange but what the
result means is that our data has no influence on the structure of the model.
We do not learn anything about a model with no free parameters by collecting
data!
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If we consider model 2 above, the parameter py must be estimated. We can
set a uniform prior between 0 and 1 for pg, so that f(pgy) =1 for all py in the
interval [0,1]. We can also write this as “our prior for p; is U(0,1)”. Then:

(eq. 2.21)

Pr(H|D) = LrRH) Prid) _ P(Hlpi, N)f(p)

Pr(D) fol P(Hpr,N)f(pn)dpu

Next we note that Pr(D|H) is the likelihood of our data given the model, which
is already stated above as equation 2.2. Plugging this into our equation, we have:

(eq. 2.22)

()L —pg)N—H

Pr(H|D) =
D) = ) o (1 )V

This ugly equation actually simplifies to a beta distribution, which can be ex-
pressed more simply as:

(eq. 2.23)

PrHID) = ot = )Y

We can compare this posterior distribution of our parameter estimate, pgr, given
the data, to our uniform prior (Figure 2.3). If you inspect this plot, you see
that the posterior distribution is very different from the prior — that is, the data
have changed our view of the values that parameters should take. Again, this
result is qualitatively consistent with both the frequentist and ML approaches
described above. In this case, we can see from the posterior distribution that
we can be quite confident that our parameter pg is not 0.5.

As you can see from this example, Bayes theorem lets us combine our prior
belief about parameter values with the information from the data in order to
obtain a posterior. These posterior distributions are very easy to interpret, as
they express the probability of the model parameters given our data. However,
that clarity comes at a cost of requiring an explicit prior. Later in the book we
will learn how to use this feature of Bayesian statistics to our advantage when
we actually do have some prior knowledge about parameter values.

Section 2.4b: Bayesian MCMC

The other main tool in the toolbox of Bayesian comparative methods is the use
of Markov-chain Monte Carlo (MCMC) tools to calculate posterior probabili-
ties. MCMC techniques use an algorithm that uses a “chain” of calculations
to sample the posterior distribution. MCMC requires calculation of likelihoods
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Figure 2.3. Bayesian prior (dotted line) and posterior (solid line) distributions
for lizard flipping. Image by the author, can be reused under a CC-BY-4.0
license.
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but not complicated mathematics (e.g. integration of probability distributions,
as in equation 2.22), and so represents a more flexible approach to Bayesian
computation. Frequently, the integrals in equation 2.21 are intractable, so that
the most efficient way to fit Bayesian models is by using MCMC. Also, setting
up an MCMC is, in my experience, easier than people expect!

An MCMC analysis requires that one constructs and samples from a Markov
chain. A Markov chain is a random process that changes from one state to
another with certain probabilities that depend only on the current state of the
system, and not what has come before. A simple example of a Markov chain is
the movement of a playing piece in the game Chutes and Ladders; the position
of the piece moves from one square to another following probabilities given by
the dice and the layout of the game board. The movement of the piece from
any square on the board does not depend on how the piece got to that square.

Some Markov chains have an equilibrium distribution, which is a stable probabil-
ity distribution of the model’s states after the chain has run for a very long time.
For Bayesian analysis, we use a technique called a Metropolis-Hasting algorithm
to construct a special Markov chain that has an equilibrium distribution that is
the same as the Bayesian posterior distribution of our statistical model. Then,
using a random simulation on this chain (this is the Markov-chain Monte Carlo,
MCMC), we can sample from the posterior distribution of our model.

In simpler terms: we use a set of well-defined rules. These rules let us walk
around parameter space, at each step deciding whether to accept or reject the
next proposed move. Because of some mathematical proofs that are beyond the
scope of this chapter, these rules guarantee that we will eventually be accepting
samples from the Bayesian posterior distribution - which is what we seek.

The following algorithm uses a Metropolis-Hastings algorithm to carry out a
Bayesian MCMC analysis with one free parameter:

1. Get a starting parameter value.
e Sample a starting parameter value, pg, from the prior distribution.
2. Starting with ¢ = 1, propose a new parameter for generation i.
o Given the current parameter value, p, select a new proposed param-
eter value, p’, using the proposal density Q(p'[p).
3. Calculate three ratios.
e a. The prior odds ratio. This is the ratio of the probability of drawing
the parameter values p and p/ from the prior (eq. 2.24).

Rpm'or = P(p)

e b. The proposal density ratio. This is the ratio of probability of
proposals going from p to p’ and the reverse. Often, we purposefully
construct a proposal density that is symmetrical. When we do that,
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QP'lp) = Q(p|p’) and as = 1, simplifying the calculations (eq. 2.25).

_ QW@'lp)
Rproposal - Q(p|p,)

e c. The likelihood ratio. This is the ratio of probabilities of the data
given the two different parameter values (eq. 2.26).

L(p'|D) _ P(Dlp")

L(p|D) — P(Dlp)

Riikelinood =

4. Multiply. Find the product of the prior odds, proposal density ratio, and
the likelihood ratio (eq. 2.27).

Raccept = Rprior . Rproposal . Rlikelihood

5. Accept or reject. Draw a random number x from a uniform distribution
between 0 and 1. If & < Rgccept, accept the proposed value of p' (p; = p’);
otherwise reject, and retain the current value p (p; = p).

6. Repeat. Repeat steps 2-5 a large number of times.

Carrying out these steps, one obtains a set of parameter values, p;, where i is
from 1 to the total number of generations in the MCMC. Typically, the chain
has a “burn-in” period at the beginning. This is the time before the chain has
reached a stationary distribution, and can be observed when parameter values
show trends through time and the likelihood for models has yet to plateau.
If you eliminate this “burn-in” period, then, as discussed above, each step in
the chain is a sample from the posterior distribution. We can summarize the
posterior distributions of the model parameters in a variety of ways; for example,
by calculating means, 95% confidence intervals, or histograms.

We can apply this algorithm to our coin-flipping example. We will consider
the same prior distribution, U(0,1), for the parameter p. We will also define
a proposal density, Q(p'|p) U(p — ¢,p + €). That is, we will add or subtract a
small number (e < 0.01) to generate proposed values of p/ given p.

To start the algorithm, we draw a value of p from the prior. Let’s say for
illustrative purposes that the value we draw is 0.60. This becomes our current
parameter estimate. For step two, we propose a new value, p/, by drawing from
our proposal distribution. We can use ¢ = 0.01 so the proposal distribution
becomes U(0.59,0.61). Let’s suppose that our new proposed value p/ = 0.595.

We then calculate our three ratios. Here things are simpler than you might have
expected for two reasons. First, recall that our prior probability distribution is
U(0,1). The density of this distribution is a constant (1.0) for all values of p
and p/. Because of this, the prior odds ratio for this example is always:
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(eq. 2.28)

Similarly, because our proposal distribution is symmetrical, Q(p'|p) = Q(p|p’)
and Rp,roposal = 1. That means that we only need to calculate the likelihood
ratio, Ryiketinood for p and p/. We can do this by plugging our values for p (or
p!) into equation 2.2:

(eq. 2.29)
N 1
P(Dlp) = p(1—p) N1 = 00 0.6%3(1 — 0.6)19°7%3 = 0.068
H 63
Likewise, (eq. 2.30)

N 100
P(D|p') = <H>p’H(1 —p)yN-H = (63 )0.59563(1 —0.595)190=63 — (0,064
The likelihood ratio is then:
(eq. 2.31)

Riiketinood = P(D|p) T 0.068

0.94

We can now calculate Roccept = Rprior - Rproposal * Riikelihooa = 1-1-0.94 = 0.94.
We next choose a random number between 0 and 1 — say that we draw x = 0.34.
We then notice that our random number 2z is less than or equal to Rgccept, SO
we accept the proposed value of p/. If the random number that we drew were
greater than 0.94, we would reject the proposed value, and keep our original
parameter value p = 0.60 going into the next generation.

If we repeat this procedure a large number of times, we will obtain a long chain
of values of p. You can see the results of such a run in Figure 2.4. In panel
A, T have plotted the likelihoods for each successive value of p. You can see
that the likelihoods increase for the first ~1000 or so generations, then reach
a plateau around InL = —3. Panel B shows a plot of the values of p, which
rapidly converge to a stable distribution around p = 0.63. We can also plot
a histogram of these posterior estimates of p. In panel C, I have done that —
but with a twist. Because the MCMC algorithm creates a series of parameter
estimates, these numbers show autocorrelation — that is, each estimate is similar
to estimates that come just before and just after. This autocorrelation can
cause problems for data analysis. The simplest solution is to subsample these
values, picking only, say, one value every 100 generations. That is what I have
done in the histogram in panel C. This panel also includes the analytic posterior
distribution that we calculated above — notice how well our Metropolis-Hastings
algorithm did in reconstructing this distribution! For comparative methods in
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general, analytic posterior distributions are difficult or impossible to construct,
so approximation using MCMC is very common.

This simple example glosses over some of the details of MCMC algorithms, but
we will get into those details later, and there are many other books that treat
this topic in great depth (e.g. Christensen et al. 2010). The point is that we
can solve some of the challenges involved in Bayesian statistics using numerical
“tricks” like MCMC, that exploit the power of modern computers to fit models
and estimate model parameters.

Section 2.4c: Bayes factors

Now that we know how to use data and a prior to calculate a posterior dis-
tribution, we can move to the topic of Bayesian model selection. We already
learned one general method for model selection using AIC. We can also do model
selection in a Bayesian framework. The simplest way is to calculate and then
compare the posterior probabilities for a set of models under consideration. One
can do this by calculating Bayes factors:

(eq. 2.32)
Pr(D|H)
Bz = 5=+

Pr(D|H3)
Bayes factors are ratios of the marginal likelihoods P(D|H) of two competing
models. They represent the probability of the data averaged over the posterior
distribution of parameter estimates. It is important to note that these marginal
likelihoods are different from the likelihoods used above for AIC' model compar-
ison in an important way. With AIC' and other related tests, we calculate the
likelihoods for a given model and a particular set of parameter values — in the
coin flipping example, the likelihood for model 2 when py = 0.63. By contrast,
Bayes factors’ marginal likelihoods give the probability of the data averaged over
all possible parameter values for a model, weighted by their prior probability.

Because of the use of marginal likelihoods, Bayes factor allows us to do model
selection in a way that accounts for uncertainty in our parameter estimates —
again, though, at the cost of requiring explicit prior probabilities for all model
parameters. Such comparisons can be quite different from likelihood ratio tests
or comparisons of AIC, scores. Bayes factors represent model comparisons that
integrate over all possible parameter values rather than comparing the fit of
models only at the parameter values that best fit the data. In other words,
AIC, scores compare the fit of two models given particular estimated values for
all of the parameters in each of the models. By contrast, Bayes factors make a
comparison between two models that accounts for uncertainty in their parameter
estimates. This will make the biggest difference when some parameters of one or
both models have relatively wide uncertainty. If all parameters can be estimated
with precision, results from both approaches should be similar.
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Figure 2.4. Bayesian MCMC from lizard flipping example. Image by the author,
can be reused under a CC-BY-4.0 license.
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Calculation of Bayes factors can be quite complicated, requiring integration
across probability distributions. In the case of our coin-flipping problem, we
have already done that to obtain the beta distribution in equation 2.22. We can
then calculate Bayes factors to compare the fit of two competing models. Let’s
compare the two models for coin flipping considered above: model 1, where
pr = 0.5, and model 2, where py = 0.63. Then:

(eq. 2.33)

Pr(D\H,) = (16030)0150463(1_0.5)100—63
0.00270

Pr(DlHQ) = _]%1:0 (16030)]763(1 - p)100_63
(g3 )3(38,64)
0.0099

0.0099
Biz 0.00270

= 3.67

In the above example, S(x,y) is the Beta function. Our calculations show that
the Bayes factor is 3.67 in favor of model 2 compared to model 1. This is
typically interpreted as substantial (but not decisive) evidence in favor of model
2. Again, we can be reasonably confident that our lizard is not a fair flipper.

In the lizard flipping example we can calculate Bayes factors exactly because
we know the solution to the integral in equation 2.33. However, if we don’t
know how to solve this equation (a typical situation in comparative methods),
we can still approximate Bayes factors from our MCMC runs. Methods to do
this, including arrogance sampling and stepping stone models (Xie et al. 2011;
Perrakis et al. 2014), are complex and beyond the scope of this book. However,
one common method for approximating Bayes Factors involves calculating the
harmonic mean of the likelihoods over the MCMC chain for each model. The
ratio of these two likelihoods is then used as an approximation of the Bayes
factor (Newton and Raftery 1994). Unfortunately, this method is extremely
unreliable, and probably should never be used (see Neal 2008 for more details).

Section 2.5: AIC versus Bayes

Before I conclude this section, I want to highlight another difference in the
way that AIC and Bayes approaches deal with model complexity. This relates
to a subtle philosophical distinction that is controversial among statisticians
themselves so I will only sketch out the main point; see a real statistics book
like Burnham and Anderson (2003) or Gelman et al. (2013) for further details.
When you compare Bayes factors, you assume that one of the models you are
considering is actually the true model that generated your data, and calculate
posterior probabilities based on that assumption. By contrast, AIC assumes
that reality is more complex than any of your models, and you are trying to
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identify the model that most efficiently captures the information in your data.
That is, even though both techniques are carrying out model selection, the basic
philosophy of how these models are being considered is very different: choosing
the best of several simplified models of reality, or choosing the correct model
from a set of alternatives.

The debate between Bayesian and likelihood-based approaches often centers
around the use of priors in Bayesian statistics, but the distinction between
models and “reality” is also important. More specifically, it is hard to imagine
a case in comparative biology where one would be justified in the Bayesian
assumption that one has identified the true model that generated the data. This
also explains why AIC-based approaches typically select more complex models
than Bayesian approaches. In an AIC' framework, one assumes that reality is
very complex and that models are approximations; the goal is to figure out how
much added model complexity is required to efficiently explain the data. In
cases where the data are actually generated under a very simple model, AIC
may err in favor of overly complex models. By contrast, Bayesian analyses
assume that one of the models being considered is correct. This type of analysis
will typically behave appropriately when the data are generated under a simple
model, but may be unpredictable when data are generated by processes that are
not considered by any of the models. However, Bayesian methods account for
uncertainty much better than AIC methods, and uncertainty is a fundamental
aspect of phylogenetic comparative methods.

In summary, Bayesian approaches are useful tools for comparative biology, es-
pecially when combined with MCMC computational techniques. They require
specification of a prior distribution and assume that the “true” model is among
those being considered, both of which can be drawbacks in some situations.
A Bayesian framework also allows us to much more easily account for phylo-
genetic uncertainty in comparative analysis. Many comparative biologists are
pragmatic, and use whatever methods are available to analyze their data. This is
a reasonable approach but one should remember the assumptions that underlie
any statistical result.

Section 2.6: Models and comparative methods

For the rest of this book I will introduce several models that can be applied to
evolutionary data. I will discuss how to simulate evolutionary processes under
these models, how to compare data to these models, and how to use model
selection to discriminate amongst them. In each section, I will describe standard
statistical tests (when available) along with ML and Bayesian approaches.

One theme in the book is that I emphasize fitting models to data and estimating
parameters. I think that this approach is very useful for the future of the
field of comparative statistics for three main reasons. First, it is flexible; one
can easily compare a wide range of competing models to your data. Second,
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it is extendable; one can create new models and automatically fit them into
a preexisting framework for data analysis. Finally, it is powerful; a model
fitting approach allows us to construct comparative tests that relate directly to
particular biological hypotheses.

Footnotes

1: T assume here that you have little interest in organisms other than lizards.

2: And, often, concludes that we just “need more data” to get the answer that
we want.

3: Especially in fields like genomics where multiple testing and massive Bon-
ferroni corrections are common; one can only wonder at the legions of type II
errors that are made under such circumstances.
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