
Chapter 13: Characters and diversification rates

Section 13.1: The evolution of self-incompatibility

Most people have not spent a lot of time thinking about the sex lives of plants.
The classic mode of sexual reproduction in angiosperms (flowering plants) in-
volves pollen (the male gametophyte stage of the plant life cycle). Pollen lands
on the pistil (the female reproductive structure) and produces a pollen tube.
Sperm cells move down the pollen tube, and one sperm cell unites with the egg
to form a new zygote in the ovule.

As you might imagine, plants have little control over what pollen grains land
on their pistil (although plant species do have some remarkable adaptations to
control pollination by animals; see Anders Nilsson 1992). In particular, this
“standard” mode of reproduction leaves open the possibility of self-pollination,
where pollen from a plant fertilizes eggs from the same plant (Stebbins 1950).
Self-fertilization (sometimes called selfing) is a form of asexual reproduction,
but one that involves meiosis; as such, there are costs to self-fertilization. The
main cost is inbreeding depression, a reduction in offspring fitness associated
with recessive deleterious alleles across the genome (Holsinger et al. 1984).

Some species of angiosperms can avoid self-fertilization through self-
incompatibility (Bateman 1952). In plants with self-incompatibility, the
process by which the sperm meets the egg is interrupted at some stage if
pollen grains have a genotype that is the same as the parent (e.g. Schopfer et
al. 1999). This prevents selfing – and also prevents sexual reproduction with
plants that have the same genotype(s) at loci involved in the process.

Species of angiosperms are about evenly divided between these two states of
self-compatibility and self-incompatibility (Igic and Kohn 2006). Furthermore,
self-incompatible species are scattered throughout the phylogenetic tree of an-
giosperms (Igic and Kohn 2006).

The evolution of selfing is a good example of a trait that might have a strong
effect on diversification rates by altering speciation, extinction, or both. One
can easily imagine, for example, how incompatibility loci might facilitate the
evolution of reproductive isolation among populations, and how lineages with
such loci might diversify at a very different tempo than those without (Goldberg
et al. 2010).

In this chapter, we will learn about a family of models where traits can affect
diversification rates. I will also address some of the controversial aspects of
these models and how we can improve these approaches in the future.
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Section 13.2: A State-Dependent Model of Diversification

The models that we will consider in this chapter include trait evolution and
associated lineage diversification. In the simplest case, we can consider a model
where the character has two states, 0 and 1, and diversification rates depend on
those states.

We need to model the transitions among these states, which we can do in an
identical way to what we did in Chapter 7 using a continuous-time Markov
model. We express this model using two rate parameters, a forward rate q01
and a backwards rate q10.

We now consider the idea that diversification rates might depend on the char-
acter state. We assume that species with character state 0 have a certain speci-
ation rate (λ0) and extinction rate (µ0), and that species in 1 have potentially
different rates of both speciation (λ1) and extinction (µ1). That is, when the
character evolves, it affects the rate of speciation and/or extinction of the lin-
eages. Thus, we have a six-parameter model (Maddison et al. 2007). We assume
that parent lineages give birth to daughters with the same character state, that
is that character states do not change at speciation.

It is straightforward to simulate evolution under our state-dependent model of
diversification. We proceed in the same way as we did for birth-death models, by
drawing waiting times, but these waiting times can be waiting times to the next
character state change, speciation, or extinction event. In particular, imagine
that there are n lineages present at time t, and that k of these lineages are in
state 0 (and n−k are in state 1). The waiting time to the next event will follow
an exponential distribution with a rate parameter of:

(eq. 13.1)
ρ = k(q01 + λ0 + µ0) + (n − k)(q10 + λ1 + µ1)

This equation says that the total rate of events is the sum of the events that
can happen to lineages with state 0 (state change to 1, speciation, or extinction)
and the analogous events that can happen to lineages with state 1. Once we
have a waiting time, we can assign an event type depending on probabilities.
For example, the probability that the event is a character state change from 0
to 1 is:

(eq. 13.2)
pq01 = (n · q01)/ρ

And the probability that the event is the extinction of a lineage with character
state 1 is:

(eq. 13.3)
pµ1 = [(n − k) · µ1]/ρ

And so on for the other four possible events.
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Once we have picked an event in this way, we can randomly assign it to one
of the lineages in the appropriate state, with each lineage equally likely to be
chosen. We then proceed forwards in time until we have a dataset with the
desired size or total time depth.

An example simulation is shown in Figure 13.1. As you can see, under these
model parameters the impact of character states on diversification is readily
apparent. In the next section we will figure out how to extract that information
from our data.

Section 13.3: Calculating Likelihoods for State-dependent
diversification models

To calculate likelihoods for state-dependent diversification models we use a prun-
ing algorithm with calculations that progress back through the tree from the
tips to the root. We will follow the description of this algorithm in Maddison
et al. (2007). We have already used this approach to derive likelihoods for
constant rate birth-death models on trees (Chapter 12), and this derivation is
similar.

We consider a phylogenetic tree with data on the character states at the tips.
For the purposes of this example, we will assume that the tree is complete and
correct – we are not missing any species, and there is no phylogenetic uncertainty.
We will come back to these two assumptions later in the chapter.

We need to obtain the probability of obtaining the data given the model (the
likelihood). As we have seen before, we will calculate that likelihood going
backwards in time using a pruning algorithm (Maddison et al. 2007). The key
principle, again, is that if we know the probabilities at some point in time on
the tree, we can calculate those probabilities at some time point immediately
before. By applying this method successively, we can move back towards the
root of the tree. We move backwards along each branch in the tree, merging
these calculations at nodes. When we get to the root, we have the probability
of the data given the model and the entire tree – that is, we have the likelihood.

The other essential piece is that we have a starting point. When we start at the
tips of the tree, we assume that our character states are fixed and known. We
use the fact that we know all of the species and their character states at the
present day as our starting point, and move backwards from there (Maddison
et al. 2007). For example, for a species with character state 0, the likelihood
for state 0 is 1, and for state 1 is zero. In other words, at the tips of the tree
we can start our calculations with a probability of 1 for the state that matches
the tip state, and 0 otherwise.

This discussion also highlights the fact that incorporating uncertainty and/or
variation in tip states for these algorithms is not computationally difficult – we
just need to start from a different point at the tips. For example, if we are
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Figure 13.1. Simulation of character-dependent diversification. Data were simu-
lated under a model where diversification rate of state zero (red) is substantially
lower than that of state 1 (black; model parameters q01 = 110 = 0.05, λ0 = 0.2,
λ1 = 0.8, µ0 = µ1 = 0.05). Image by the author, can be reused under a
CC-BY-4.0 license.
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completely unsure about the tip state for a certain taxa, we can begin with
likelihoods of 0.5 for starting in state 0 and 0.5 for starting in state 1. How-
ever, such calculations are not commonly implemented in comparative methods
software.

We now need to consider the change in the likelihood as we step backwards
through time in the tree (Maddison et al. 2007). We will consider some very
small time interval ∆t, and later use differential equations to find out what
happens in the limit as this interval goes to zero (Figure 13.2). Since we will
eventually take the limit as ∆t → 0, we can assume that the time interval is
so small that, at most, one event (speciation, extinction, or character change)
has happened in that interval, but never more than one. We will calculate the
probability of the observed data given that the character is in each state at time
t, again measuring time backwards from the present day. In other words, we
are considering the probability of the observed data if, at time t, the character
state were in state 0 [p0(t)] or state 1 [p1(t)]. For now, we can assume we know
these probabilities, and try to calculate updated probabilities at some earlier
time t + ∆t: p0(t + ∆t) and p1(t + ∆t).

To calculate p0(t + ∆t) and p1(t + ∆t), we consider all of the possible things
that could happen in a time interval ∆t along a branch in a phylogenetic tree
that are compatible with our dataset (Figure 13.2; Maddison et al. 2007). First,
nothing at all could have happened; second, our character state could have
changed; and third, there could have been a speciation event. This last event
might seem incorrect, as we are only considering changes along branches in the
tree and not at nodes. If we did not reconstruct any speciation events at some
point along a branch, then how could one have taken place? The answer is that
a speciation event could have occurred but all taxa descended from that branch
have since gone extinct. We must also consider the possibility that either the
right or the left lineage went extinct following the speciation event; that is why
the speciation event probabilities appear twice in Figure 13.2 (Maddison et al.
2007).

We can write an equation for these updated probabilities. We will consider the
probability that the character is in state 0 at time t + ∆t; the equation for state
1 is similar (Maddison et al. 2007).

(eq. 13.4)

p0(t + ∆t) = (1 − µ0)∆t · [(1 − q01∆t)(1 − λ0∆t)p0(t) + q01∆t(1 − λ0∆t)
p1(t) + 2 · (1 − q01∆t)λ0∆t · E0(t)p0(t)]

We can multiply through and simplify. We will also drop any terms that include
[∆t]2, which become vanishingly small as ∆t decreases. Doing that, we obtain
(Maddison et al. 2007):

(eq. 13.5)

p0(t + ∆t) = [1 − (λ0 + 0 + q01)∆t]p0(t) + (q01∆t)p1(t) + 2(λ0∆t)E0(t)p0(t)
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Figure 13.2. Illustration of calculations of probabilities of part of the data
descended from node N (red) moving along a branch in the tree. Starting with
values for the probability at time t, we calculate the probability at time t + ∆t,
moving towards the root of the tree. Redrawn from Maddison et al. (2007).
Image by the author, can be reused under a CC-BY-4.0 license.
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Figure 13.3. The four scenarios under which a lineage with state 0 at time
t + ∆t can yield the data descended from node N. Redrawn from Maddison et
al. (2007). Image by the author, can be reused under a CC-BY-4.0 license.
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Similarly,

(eq. 13.6)

p1(t + ∆t) = [1 − (λ1 + 1 + q10)∆t]p1(t) + (q10∆t)p0(t) + 2(λ1∆t)E1(t)p1(t)

We can then find the instantaneous rate of change for these two equations by
solving for p1(t + ∆t)/[∆t], then taking the limit as ∆t → 0. This gives (Mad-
dison et al. 2007):

(eq. 13.7)

dp0

dt
= −(λ0 + µ0 + q01)p0(t) + q01p1(t) + 2λ0E0(t)p0(t)

and:

(eq. 13.8)

dp1

dt
= −(λ1 + µ1 + q10)p1(t) + q10p1(t) + 2λ1E1(t)p1(t)

We also need to consider E0(t) and E1(t). These represent the probability that
a lineage with state 0 or 1, respectively, and alive at time t will go extinct before
the present day. Neglecting the derivation of these formulas, which can be found
in Maddison et al. (2007) and is closely related to similar terms in Chapters 11
and 12, we have:

(eq. 13.9)

dE0

dt
= µ0 − (λ0 + µ0 + q01)E0(t) + q01E1(t) + λ0[E0(t)]2

and:

(eq. 13.10)

dE1

dt
= µ1 − (λ1 + µ1 + q10)E1(t) + q10E0(t) + λ1[E1(t)]2

Along a single branch in a tree, we can sum together many such small time
intervals. But what happens when we get to a node? Well, if we consider the
time interval that contains the node, then we already know what happened –
a speciation event. We also know that the two daughters immediately after
the speciation event were identical in their traits (this is an assumption of the
model). So we can calculate the likelihood for their ancestor for each state as
the product of the likelihoods of the two daughter branches coming into that
node and the speciation rate (Maddison et al. 2007). In this way, we merge our
likelihood calculations along each branch when we get to nodes in the tree.
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When we get to the root of the tree, we are almost done – but not quite! We
have partial likelihood calculations for each character state – so we know, for
example, the likelihood of the data if we had started with a root state of 0, and
also if we had started at 1. To merge these we need to use probabilities of each
character state at the root of the tree (Maddison et al. 2007). For example, if
we do not know the root state from any outside information, we might consider
root probabilities for each state to be equal, 0.5 for state 0 and 0.5 for state
1. We then multiply the likelihood associated with each state with the root
probability for that state. Finally, we add these likelihoods together to obtain
the full likelihood of the data given the model.

The question of which root probabilities to use for this calculation has been
discussed in the literature, and does matter in some applications. Aside from
equal probabilities of each state, other options include using outside information
to inform prior probabilities on each state (e.g. Hagey et al. 2017), finding the
calculated equilibrium frequency of each state under the model (Maddison et
al. 2007), or weighting each root state by its likelihood of generating the data,
effectively treating the root as a nuisance parameter (FitzJohn et al. 2009).

I have described the situation where we have two character states, but this
method generalizes well to multi-state characters (the MuSSE method; FitzJohn
2012). We can describe the evolution of the character in the same way as
described for multi-state discrete characters in chapter 9. We then can as-
sign unique diversification rate parameters to each of the k character states:
λ0, λ1, . . . , λk and µ0, µ1, . . . , µk (FitzJohn 2012). It is worth keeping in mind,
though, that it is not too hard to construct a model where parameters are not
identifiable and model fitting and estimation become very difficult.

Section 13.4: ML and Bayesian Tests for State-Dependent
Diversification

Now that we can calculate the likelihood for state-dependent diversification
models, formulating ML and Bayesian tests follows the same pattern we have
encountered before. For ML, some comparisons are nested and so you can
use likelihood ratio tests. For example, we can compare the full BiSSe model
(Maddison et al. 2007), with parameters q01, q10, λ0, λ1, µ0, µ1 with a restricted
model with parameters q01, q10, λall, µall. Since the restricted model is a special
case of the full model where λ0 = λ1 = λall and µ0 = µ1 = µall, we can
compare the two using a likelihood ratio test, as described earlier in the book.
Alternatively, we can compare a series of BiSSe-type models by comparing their
AICc scores.

For example, I will apply this approach to the example of self-incompitability.
I will use data from Goldberg and Igic (2012), who provide a phylogenetic tree
and data for 356 species of Solanaceae. All species were classified as having
any form of self incompatibility, even if the state is variable among populations.
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The data, along with a stochastic character map of state changes, are shown in
Figure 13.4.

Figure 13.4. Data from Goldberg and Igic (2012) showing presence (red) and
absence (black) of self-incomatibility among Solanaceae. Branches colored using
stochastic character mapping under a model with distinct forwards and back-
wards rates; these reconstructions are biased if characters affect diversification
rates. Image by the author, can be reused under a CC-BY-4.0 license.

Applying the BiSSe models to these data and assuming that q01 ̸= q10, we obtain
the following results:
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Model

Number
of
parameters

Parameter
estimates lnL AIC

Character-
independent
model

4 λ = 0.65,
µ = 0.57

-945.96 1899.9

q01 = 0.16,
q10 = 0.09

Speciation rate
depends on
character

5 µ = 0.57 -945.57 1901.1

λ0 = 0.69,
λ1 = 0.63
q01 = 0.17,
q10 = 0.08

Extinction rate
depends on
character

5 λ = 0.65 -943.93 1897.9

µ0 = 0.45,
µ1 = 0.67
q01 = 0.22,
q10 = 0.06

Full character-
dependent
model

6 λ0 = 0.49,
λ1 = 0.79

-941.94 1895.9

µ0 = 0.20,
µ1 = 0.84
q01 = 0.29,
q10 = 0.05

From this, we conclude that models where the character influences diversification
fit best, with the full model receiving the most support. We can’t discount the
possibility that the character only influences extinction and not speciation, since
that model is within 2 AIC units of the best model.

Alternatively, we can carry out a Bayesian test for state-dependent diversifi-
cation. Like other models in the book, this requires setting up an MCMC
algorithm that samples the posterior distributions of our model parameters
(FitzJohn 2012). In this case:

1. Sample a set of starting parameter values, q01, q10, λ0, λ1, µ0, µ1, from their
prior distributions. For example, one could set prior distribution for all
parameters as exponential with a mean and variance of λpriori

(note that,
as usual, the choice for this parameter should depend on the units of
tree branch lengths you are using). We then select starting values for all
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parameters from the prior.
2. Given the current parameter values, select new proposed parameter values

using the proposal density Q(p′|p). For all parameter values, we can use a
uniform proposal density with width wp, so that Q(p′|p) U(p − wp/2, p +
wp/2). We can either choose all parameter values simultaneously, or one
at a time (the latter is typically more effective).

3. Calculate three ratios:
• The prior odds ratio. This is the ratio of the probability of drawing

the parameter values p and p′ from the prior. Since we have expo-
nential priors for all parameters, we can calculate this ratio as (eq.
13.11):

Rprior = λpriori
e−λpriori

p′

λpriori
e−λpriori

p
= eλpriori

(p−p′)

• The proposal density ratio. This is the ratio of probability of pro-
posals going from p to p′ and the reverse. We have already de-
clared a symmetrical proposal density, so that Q(p′|p) = Q(p|p′)
and Rproposal = 1.

• The likelihood ratio. This is the ratio of probabilities of the data
given the two different parameter values. We can calculate these
probabilities from the approach described in the previous section.

4. Find Raccept as the product of the prior odds, proposal density ratio, and
the likelihood ratio. In this case, the proposal density ratio is 1, so (eq.
13.12):

Raccept = Rprior · Rlikelihood

5. Draw a random number u from a uniform distribution between 0 and 1.
If u < Raccept, accept the proposed value of the parameter(s); otherwise
reject, and retain the current value of the two parameters.

6. Repeat steps 2-5 a large number of times.

Applying this method to the self-incompatability data, we find that again esti-
mates of speciation and extinction differ substantially among the two character
states (Figure 13.5). Since the posterior distributions for extinction do not
overlap, we again infer that the character likely influences that model param-
eter; speciation results are again suggestive but not as conclusive as those for
extinction.

Section 13.5: Potential Pitfalls and How to Avoid Them

Recently, a few papers have been published that are critical of state-dependent
diversification models (Rabosky and Goldberg 2015, Maddison and FitzJohn
(2015)). These papers raise substantive critiques that are important to address
when applying the methods described in this chapter to empirical data. In this
section I will attempt to describe the critiques and their potential remedies.
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Figure 13.5. Bayesian BiSSe analysis of self-incompatibility. Posterior distri-
butions for character-dependent speciation (λ0 and λ1) and extinction (µ0 and
µ1). Image by the author, can be reused under a CC-BY-4.0 license.
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The most serious limitation of state-dependent models as currently implemented
is that they consider only a relatively small set of possible models. In particular,
the approach we describe above compares two models: first, a model where birth
and death rates are constant and do not depend on the state of the character;
and second, a model where birth and death rates depend only on the character
state (Maddison et al. 2007). But there is another possibility that might be (in
general) more common than either of the models we consider: birth and death
rates vary, but in a way that is not dependent on the particular character we
have chosen to analyze. I say that this is probably a common pattern because
we know that birth and death rates vary tremendously across lineages in the
tree of life (Alfaro et al. 2009), and it seems probable to me that many of our
hypotheses about which characters might contribute to that variation are, at
this point, stabs in the dark.

This issue is a normal one for statistical analyses – after all, there are always
other models outside of our set of considered possibilities. However, in this case,
the fact that state-dependent diversification models fail to consider the possi-
bility outlined above causes a very particular – and peculiar – problem: if we
apply the tests to empirical phylogenetic trees, even with made-up data, we al-
most always find statistically significant results (Rabosky and Goldberg 2015).
For example, Rabosky and Goldberg (2015) found that there is very often a
statistically significant “signal” that the number of letters in a species name is
significantly associated with speciation rates across a range of empirical datasets.
This result might seem ridiculous and puzzling, as there is no way that species
name length should be associated with the diversification processes. However, if
we return to our alternative model above, then the results make sense. Rabosky
and Goldberg (2015) simulated character evolution on real phylogenetic trees,
and their results do not hold when the trees are simulated along with the char-
acters (this is also why Rabosky and Goldberg’s (2015) results do not represent
“type I errors,” contra their paper, because the data are not simulated under
the null hypothesis). On these real trees, speciation and/or extinction rates
vary across clades. Among the two models that the authors consider, both are
wrong; speciation and extinction are independent of the character but not con-
stant through time. Of the two alternatives, the state-dependent model tends
to fit better because, from a statistical point of view, it is important for the
model to capture some variation in birth and death rates across clades. Even
a random character will pick up some of this variation, so that the alternative
model tends to fit better than the null – even though, in this case, the character
has nothing to do with diversification!

Fortunately, there are a number of ways to deal with this problem. First, one
can compare the statistical support for the state-dependent model with the sup-
port that one obtains for random data. The random data could be simulated
on the tree, or one could permute the tips or draw random data from a multi-
nomial distribution (Rabosky and Goldberg 2015). One can then compare, for
example, the distribution of ∆AICc scores obtained from these permutations to
the ∆AICc for the original data. There are also semi-parametric methods based
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on permutations that have similar statistical properties (Rabosky and Goldberg
2017). Alternatively, we could explicitly consider the possibility that some un-
measured character is actually the thing that is influencing diversification rates
(Beaulieu and O’Meara 2016). This latter approach is the most elegant as we
can directly add the model described in this section to our list of candidates
(see Beaulieu and O’Meara 2016).

A more general critique of state-dependent models of diversification was raised
by Maddison and Fitzjohn (Maddison and FitzJohn 2015). This paper pointed
out that statistically significant results for these tests can be driven by an event
on a single branch of a tree, and therefore be unreplicated. This is a good
criticism that applies equally well to a range of comparative methods. We can
deal with this critique, in part, by making sure the events we test are replicated
in our data. Together, both of these critiques argue for a stronger set of model
adequacy approaches in comparative methods.

Section 13.6: Summary

Many evolutionary models postulate a link between species characteristics and
speciation, extinction, or both. These hypotheses can be tested using state-
dependent diversification models, which explicitly consider the possibility that
species’ characters affect their diversification rates. State-dependent models as
currently implemented have some potential problems, but there are methods
to deal with these critiques. The overall ability of state-dependent models to
explain broad patterns of evolutionary change remains to be determined, but
represents a promising avenue for future research.
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