
Chapter 12: Beyond birth-death models

Section 12.1: Capturing variable evolution

As we discovered in Chapter 11, there are times and places where the tree of
life has grown more rapidly than others. For example, islands and island-like
habitats are sometimes described as hotspots of speciation (Losos and Schluter
2000; Hughes and Eastwood 2006), and diversification rates in such habitats
can proceed at an extremely rapid pace. On a broader scale, many studies
have shown that speciation rates are elevated and/or extinction rates depressed
following mass extinctions (e.g. Sepkoski 1984). Finally, some clades seem
to diversity much more rapidly than others. In my corner of the world, the
Pacific Northwest of the United States, this variation is best seen in our local
amphibians. We have species like the spotted frog and the Pacific tree frog,
which represent two very diverse frog lineages with high diversification rates
(Ranidae and Hylidae, respectively; Roelants et al. 2007). At the same time,
if one drives a bit to the high mountain streams, you can find frogs with tiny
tails. These Inland Tailed Frogs are members of Ascaphidae, a genus with only
two species, one coastal and one inland. (As an aside, the tail, found only in
males, is an intromittent organ used for internal fertilization - analogous to a
penis, but different!) These two tailed frog species are the sister group to a small
radiation of four species frogs in New Zealand (Leopelmatidae, which have no
tails). These two clades together - just six species - make up the sister clade to
all other frogs, nearly 7000 species (Roelants et al. 2007; Jetz and Pyron 2018).
We seek to explain patterns like this contrast in the diversity of two groups
which decend from a common ancestor and are, thus, the same age.

Simple, constant-rate birth-death models are not adequate to capture the com-
plexity and dynamics of speciation and extinction across the tree of life. Spe-
ciation and extinction rates vary through time, across clades, and among ge-
ographic regions. We can sometimes predict this variation based on what we
know about the mechanisms that lead to speciation and/or extinction.

In this chapter, I will explore some extensions to birth-death models that allow
us to explore diversification in more detail. This chapter also leads naturally
to the next, chapter 13, which will consider the case where diversification rates
depend on species’ traits.

Section 12.2: Variation in diversification rates across clades

We know from analyses of tree balance that the tree of life is more imbalanced
than birth-death models predict. We can explore this variation in diversification
rates by allowing birth and death models to vary along branches in phylogenetic
trees. The simplest scenario is when one has a particular prediction about
diversification rates to test. For example, we might wonder if diversification
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Figure 12.1. Contrasts in frog diversity. Spotted frogs (A) and Pacific tree frogs
(B) come from diverse clades, while tailed frogs (C) and New Zealand frogs
(D) are from depauperate clades. Photo credits: A: Sean Neilsen / Wikimedia
Commons / Public Domain, B: User:The High Fin Sperm Whale / Wikimedia
Commons / CC-BY-SA-3.0, C: User:Leone.baraldi / Wikimedia Commons /
CC-BY-SA-4.0, D: Phil Bishop / Wikimedia Commons / CC-BY-SA-2.5.
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rates in one clade (clade A in Figure 12.2) are higher than in the rest of the
phylogenetic tree. We can test this hypothesis by fitting a multiple-rate birth-
death model.

The simplest method to carry out this test is by using model selection in a
ML framework (Rabosky et al. 2007). To do this, we first fit a constant-rates
birth-death model to the entire tree, and calculate a likelihood. We can then fit
variable-rates birth-death models to the data, comparing the fit of these models
using either likelihood ratio tests or AICC . The simplest way to fit a variable-
rates model is to adapt the likelihood formula in equation 11.18 (or eq. 11.24
if species are unsampled). We calculate the likelihood in two parts, one for the
background part of the tree (with rates λB and µB) and one for the focal clade
that may have different diversification dynamics (with rates λA and µA). We
can then compare this model to one where speciation and extinction rates are
constant through time.

Figure 12.2. A phylogenetic tree including three clades, illustrating two possible
models for diversification: a constant rates model, where all three clades have
the same diversification parameters λT and µT , and a variable rates model,
where clade A has parameters (λA and µA) that differ from those of the other
two clades (λB and µB). Image by the author, can be reused under a CC-BY-4.0
license.

Consider the example in Figure 12.2. We would like to know whether clade A
has speciation and extinction rates, λA and µA, that differ from the background
rates, λB and µB – we will call this a “variable rates” model. The alternative
is a “constant rates” model where the entire clade has constant rate parameters
λT and µT . These two models are nested, since the constant-rates model is a
special case of the variable rates model where λT = λA = λB and µT = µA = µB .
Calculating the likelihood for these two models is reasonably straightforward -
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we simply calculate the likelihood for each section of the tree using the relevant
equation from Chapter 11, and then multiply the likelihoods from the two parts
of the tree (or add the log-likelihoods) to get the overall likelihood.

For a real example, let’s look at the phylogenetic tree of amphibians and eval-
uate the hypothesis that the tailed and New Zealand frogs, sister clade to the
rest of frogs, diversified at a slower rate than other amphibians (Figure 12.3).
We can use the phylogenetic “backbone” tree from Jetz and Pyron (Jetz and
Pyron 2018), assigning diversities based on the classification associated with
that publication. We can then calculate likelihoods based on equation 11.24.

We can calculate the likelihood of the constant rates model, with two parameters
λT and µT , to a variable rates model with four parameters λliop, µliop, λother,
and µother. For this example, we obtain the following results.

Model Parameter estimates ln-Likelihood AICc

Constant rates λT = 0.30 -1053.9 2111.8
µT = 0.28

Variable rates lambdaliop = 0.010 -1045.4 2101.1
µliop = 0.007

lambdaother = 0.29
µother = 0.27

With a difference in AICc of more than 10, we see from these results that there
is good reason to think that there is a difference in diversification rates in these
“oddball” frogs compared to the rest of the amphibians.

Of course, more elaborate comparisons are possible. For example, one could
compare the fit of four models, as follows: Model 1, constant rates; Model 2,
speciation rate in clade A differs from the background; Model 3, extinction
rate in clade A differs from the background; and Model 4, both speciation and
extinction rates in clade A differ from the background. In this case, some of
the pairs of models are nested – for example, Model 1 is a special case of Model
2, which is, in turn, a special case of Model 4 – but all four do not make a
nested series. Here we benefit from using a model selection approach based on
AICC . We can fit all four models and use their relative number of parameters
to calculate AICC scores. We can then calculate AICC weights to evaluate the
relative support for each of these four models. (As an aside, it might be difficult
to differentiate among these four possibilities without a lot of data!)

But what if you do not have an a priori reason to predict differential diversifica-
tion rates across clades? Or, what if the only reason you think one clade might
have a different diversification rate than another is that it has more species?
(Such reasoning is circular, and will wreak havoc with your analyses!) In such
cases, we can use methods that allow us to fit general models where diversifica-
tion rates are allowed to vary across clades in the tree. Available methods use
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Figure 12.3. Phylogenetic tree of amphibians with divergence times and diversi-
ties of major clades. Data from Jetz and Pyron (Jetz and Pyron 2018). Image
by the author, can be reused under a CC-BY-4.0 license.
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stepwise AIC (MEDUSA, Alfaro et al. 2009; but see May and Moore 2016),
or reversible-jump Bayesian MCMC (Rabosky 2014, 2017; but see Moore et al.
2016).

For example, running a stepwise-AIC algorithm on the amphibian data (Alfaro
et al. 2009) results in a model with 11 different speciation and extinction regimes
(Figure 12.4). This is good evidence that diversification rates have varied wildly
through the history of amphibians.

One note: all current approaches fit a model where birth and death rates change
at discrete times in the phylogenetic tree - that is, along certain branches in the
tree leading to extant taxa. One might wish for an approach, then, that models
such changes - using, for example, a Poisson process - and then locates the
changes on the tree. However, we still lack the mathematics to solve for E(t)
(e.g. equation 11.19) under such a model (Moore et al. 2016). Given that, we
can view current implementations of models where rates vary across clades as an
approximation to the likelihood, and one that discounts the possibility of shifts
in speciation and/or extinction rates among any clades that did not happen to
survive until the present day (Rabosky 2017) - and we are stuck with that until
a better alternative is developed!

Section 12.3: Variation in diversification rates through time

In addition to considering rate variation across clades, we might also wonder
whether birth and/or death rates have changed through time. For example, per-
haps we think our clade is an adaptive radiation that experienced rapid diversifi-
cation upon arrival to an island archipelago and slowed as this new adaptive zone
got filled (Schluter 2000). This hypothesis is an example of density-dependent
diversification, where diversification rate depends on the number of lineages
that are present (Rabosky 2013). Alternatively, perhaps our clade has been
experiencing extinction rates that have changed through time, perhaps peak-
ing during some time period of unfavorable climactic conditions (Benton 2009).
This is another hypothesis that predicts variation in diversification (speciation
and extinction) rates through time.

We can fit time-dependent diversification models using likelihood equations that
allow arbitrary variation in speciation and/or extinction rates, either as a func-
tion of time or depending on the number of other lineages in the clade. To
figure out the likelihood we can first make a simplifying assumption: though
diversification rates might change, they are constant across all lineages at any
particular time point. In particular, this means that speciation (and/or extinc-
tion) rates slow down (or speed up) in exactly the same way across all lineages
in an evolving clade. This is again the Equal-Rates Markov (ERM) model for
tree growth described in the previous chapter.

Our assumption about equal rates across lineages at any time means that we
can consider time-slices through the tree rather than individual branches, i.e. we
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Figure 12.4. Analysis of diversification rate shifts among amphibian clades
using MEDUSA (Alfaro et al. 2009). Arrows highlight places where speciation,
extinction, or both are inferred to have shifted; green arrows indicate an inferred
increase in r = λ − µ, while red arrows indicate decreased r. Data from Jetz
and Pyron (Jetz and Pyron 2018). Image by the author, can be reused under a
CC-BY-4.0 license.
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can get all the information that we need to fit these models from lineage through
time plots.

The most general way to fit time-varying birth-death models to phylogenetic
trees is described in Morlon et al. (2011). Consider the case where both speci-
ation and extinction rates vary as a function of time, λ(t) and µ(t). Morlon et
al. (2011) derive the likelihood for such a model as:

(eq. 12.1)

L(t1, t2, . . . , tn−1) = (n + 1)!
fn

∑n−1
i=1 λ(ti)Ψ(si,1, ti)Ψ(si,2, ti)

λ[1 − E(t1)]2

Where:

(eq. 12.2)
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(eq. 12.3)
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Following chapter 11, n is the number of tips in the tree, and divergence times
t1, t2, . . . , tn−1 are defined as measured from the present (e.g. decreasing towards
the present day). λ(t) and µ(t) are speciation and extinction rates expressed
as an arbitrary function of time, f is the sampling fraction (under a uniform
sampling model). For a node starting at time ti, si,1 and si,2 are the times when
the two daughter lineages encounter a speciation event in the reconstructed
tree1. E(t), as before, is the probability that a lineage alive at time t leaves
no descendants in the sample. Finally, Ψ(s, t) is the probability that a lineage
alive at time s leaves exactly one descent at time t < s in the reconstructed tree.
These equations look complex, and they are - but basically involve integrating
the speciation and extinction functions (and their difference) along the branches
of the phylogenetic tree.

Note that my equations here differ from the originals in Morlon et al. (2011) in
two ways. First, Morlon et al. (2011) assumed that we have information about
the stem lineage and, thus, used an index on ti that goes up to n instead of
n − 1 and a different denominator conditioning on survival of the descendants
of the single stem lineage (Morlon et al. 2011). Second, I also multiply by the
total number of topological arrangements of n taxa, (n + 1)!.
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If one substitutes constants for speciation and extinction (λ(t) = λc, µ(t) = µc)
in equation 12.1, then one obtains equation 11.24; if one additionally considers
the case of complete sampling and substitutes f = 1 then we obtain equation
11.18. This provides a single unified framework for time-varying phylogenetic
trees with uniform incomplete sampling (see also Höhna 2014 for independent
but equivalent derivations that also extend to the case of representative sam-
pling).

Equation 12.1 requires that we define speciation rate as a function of time.
Two types of time-varying models are currently common in the comparative
literature: linear and expoential. If speciation rates change linearly through
time (see Rabosky and Lovette 2008 for an early version of this model):

(eq. 12.4)
λ(t) = λ0 + αλt

Where λ0 is the initial speciation rate at the present and alpha is the slope
of speciation rate change as we go back through time. αλ must be chosen so
that speciation rates do not become negative as we move back through the
tree: αλ > −λ0/t1. Note that the interpretation of αλ is a bit strange since we
measure time backwards: a positive αλ, for example, would mean that speciation
rates have declined from the past to the present. Other time-dependent models
published earlier (e.g. Rabosky and Lovette 2008, which considered a linearly
declining pure-birth model) do not have this property.

We could also consider a linear change in extinction through time:

(eq. 12.5)
µ(t) = µ0 + αµt

Again, αµ is the change in extinction rate through time, and must be interpreted
in the same “backwards” way as αλ. Again, we must restrict our parameter to
avoid a negative rate: αµ > −µ0/t1

One can then substitute either of these formulas into equation 12.1 to calculate
the likelihood of a model where speciation rate declines through time. Many
implementations of this approach use numerical approximations rather than
analytic solutions (see, e.g., Morlon et al. 2011; Etienne et al. 2012).

Another common model has speciation and/or extinction rates changing expo-
nentially through time:

(eq. 12.6)
λ(t) = λ0eβλt

and/or

(eq. 12.7)
µ(t) = µ0eβµt

9



We can again calculate likelihoods for this model numerically (Morlon et al.
2011, Etienne et al. (2012)).

As an example, we can test models of time-varying diversification rates across
part of the amphibian tree of life from Jetz and Pyron (2018). I will focus
on one section of the salamanders, the lungless salamanders (Plethodontidae,
comprised of the clade that spans Bolitoglossinae, Spelerpinae, Hemidactylinae,
and Plethodontinae). This interesting clade was already identified above as
including both an increase in diversification rates (at the base of the clade) and
a decrease (on the branch leading to Hemidactylinae; Figure 12.4). The tree
I am using may be missing a few species; this section of the tree includes 440
species in Jetz and Pyron (2018) but 471 speices are listed on Amphibiaweb as
of May 2018. Thus, I will assume random sampling with f = 440/471 = 0.934.

Comparing the fit of a set of models, we obtain the following results:

Model Number of params. Param. estimates lnL AIC
CRPB 1 λ = 0.05111267 497.8 -993.6
CRBD 2 λ = 0.05111267 497.8 -991.6
SP-L µ = 0

3 λ0 = 0.035 513.0 -1019.9
αλ = 0.0011
µ = 0

SP-E 3 λ0 = 0.040 510.7 -1015.4
βλ = 0.016
µ = 0

EX-L 3 λ = 0.053 497.8 -989.6
µ0 = 0
αµ = 0.000036

EX-E 3 λ = 0.069 510.6 -1015.3
µ0 = 61.9
βµ = −111.0

Models are abbreviated as: CRPB = Constant rate pure birth; CRBD = Con-
stant rate birth-death; SP-L = Linear change in speciation; SP-E = Exponential
change in speciation; EX-L = Linear change in extinction; EX-E = Exponential
change in extinction.

The model with the lowest AIC score has a linear decline in speciation rates,
and moderate support compared to all other models. From this, we support the
inference that diversification rates among these salamanders has slowed through
time. Of course, there are other models I could have tried, such as models where
both speciation and extinction rates are changing through time, or models where
there are many more extant species of salamanders than currently recognized.
The conclusion we make is only as good as the set of models being considered,
and one should carefully consider any plausible models that are not in the
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candidate set.

Section 12.4: Diversity-dependent models

Time-dependent models in the previous section are often used as a proxy to
capture processes like key innovations or adaptive radiations (Rabosky 2014).
Many of these theories suggest that diversification rates should depend on the
number of species alive in a certain time or place, rather than time (Phillimore
and Price 2008; Etienne and Haegeman 2012; Etienne et al. 2012; Rabosky
2013; Moen and Morlon 2014). Therefore, we might want to define speciation
rate in a truly diversity dependent manner rather than using time as a proxy:

(eq. 12.8)
λ(t) = λ0(1 − Nt

K
)

Since speciation rate now depends on number of lineages rather than time, we
can’t plug this expression into our general formula (Morlon et al. 2011). In-
stead, we can use the approach outlined by Etienne et al. (2012) and Etienne
et al. (2016). This approach focuses on numerical solutions to differential equa-
tions moving forward through time in the tree. The overall idea of the approach
is similar to Morlon, but details differ; likelihoods from Etienne et al. (2012)
should be directly comparable to all the likelihoods presented in this book pro-
vided that the conditioning is the same and they are multiplied by the total
number of topological arrangements, (n + 1)!, to get a likelihood for the tree
rather than for the branching times. Etienne’s approach can also deal with
incomplete sampling under a uniform sampling model.

As an example, we can fit a basic model of diversity-dependent speciation to our
phylogenetic tree of lungless salamanders introduced above. Doing so, we find
a ML estimate of λ0 = 0.099, µ = 0, and K = 979.9, with a log-likelihood of
537.3 and an AIC of -1068.7. This is a substantial improvement over any of the
time-varying models considered above, and evidence for diversity dependence
among lungless salamanders.

Both density- and time-dependent approaches have become very popular, as
time-dependent diversification models are consistent with many ecological mod-
els of how multi-species clades might evolve through time. For example, adap-
tive radiation models based on ecological opportunity predict that, as niches
are filled and ecological opportunity “used up,” then we should see a declining
rate of diversification through time (Etienne and Haegeman 2012; Rabosky and
Hurlbert 2015). By contrast, some models predict that species create new oppor-
tunities for other species, and thus predict accelerating diversification through
time (Emerson and Kolm 2005). These are reasonable hypotheses, but there is
a statistical challenge: in each case, there is at least one conceptually different
model that predicts the exact same pattern. In the case of decelerating diversi-
fication, the predicted pattern of a lineage-through-time plot that bends down
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towards the present day can also come from a model where lineages accumulate
at a constant rate, but then are not fully sampled at the present day (Pybus
and Harvey 2000). In other words, if we are missing some living species from
our phylogenetic tree and we don’t account for that, then we would mistake a
constant-rates birth death model for a signal of slowing diversification through
time. Of course, methods that we have discussed can account for this. Some
methods can even account for the fact that the missing taxa might be non-
random, as missing taxa tend to be either rare or poorly differentiated from
their sister lineages (e.g. often younger than expected by chance; Cusimano and
Renner 2010; Brock et al. 2011). However, the actual number of species in
a clade is always quite uncertain and, in every case, must be known for the
method to work. So, an alternative explanation that is often viable is that we
are missing species in our tree, and we don’t know how many there are. Addi-
tionally, since much of the signal for these methods comes from the most recent
branching events in the tree, some “missing” nodes may simply be too shallow
for taxonomists to call these things “species.” In other words, our inferences
of diversity dependence from phylogenetic trees are strongly dependent on our
understanding of how we have sampled the relevant taxa.

Likewise, a pattern of accelerating differentiation mimics the pattern caused by
extinction. A phylogenetic tree with high but constant rates of speciation and
extinction is nearly impossible to distinguish from a tree with no extinction and
speciation rates that accelerate through time.

Both of the above caveats are certainly worth considering when interpreting
the results of tests of diversification from phylogenetic data. In many cases,
adding fossil information will allow investigators to reliably distinguish between
the stated alternatives, although methods that tie fossils and trees together
are still relatively poorly developed (but see Slater and Harmon 2013). And
many current methods will give ambiguous results when multiple models provide
equivalent explanations for the data - as we would hope!

Section 12.5: Protracted speciation

In all of the diversification models that we have considered so far, speciation
happens instantly; one moment we have a single species, and then immediately
two. But this is not biologically plausible. Speciation takes time, as evidenced
by the increasing numbers of partially distinct populations that biologists have
identified in the natural world (Coyne and Orr 2004; De Queiroz 2005). Fur-
thermore, the fact that speciation takes time can have a profound impact on
the shapes of phylogenetic trees (Losos and Adler 1995). Because of this, it is
worth considering diversification models that explicitly account for the fact that
the process of speciation has a beginning and an end.

The most successful models to tackle this question have been models of pro-
tracted speciation (Rosindell et al. 2010; Etienne and Rosindell 2012; Lambert
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et al. 2015). One way to set up such a model is to state that speciation begins
by the formation of an incipient species at some rate λ1. This represents a
“partial” species; one can imagine, for example, that this is a population that
has split off from the main range of the species, but has not yet evolved full
reproductive isolation. The incipient species only becomes a “full” species if it
completes speciation, which occurs at a rate λ2. This represents the rate at
which an incipient species evolves full species status (Figure 12.5).

Figure 12.5. An illustration of the protracted model of speciation on a phylo-
genetic tree. Panel A shows the growing tree including full (solid lines) and
incipient species (dotted lines). Incipient species become full at some rate, and
if that does not occur before sampling then they are not included in the final
species tree (panel B; e.g. lineage 4i). Redrawn from Lambert et al. (2015).
Image by the author, can be reused under a CC-BY-4.0 license.

Because speciation takes time, the main impact of this model is that we predict
fewer very young species in our tree – that is, the nodes closest to the tips of the
tree are not as young as they would be compared to pure-birth or birth-death
models without protracted speciation (Figure 12.6). As a result, protracted spe-
ciation models produce lineage through time plots that can mimic the properties
often attributed to diversity-dependence, even without any interactions among
lineages (Etienne and Rosindell 2012)!

Likelihood approaches are available for this model of protracted speciation.
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Figure 12.6. Lineage-through-time plots under a protracted birth-death model.
Redrawn from Etienne and Rosindell (2012). Image by the author, can be reused
under a CC-BY-4.0 license.
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Again, the likelihood must be calculated using numerical methods (Lambert
et al. 2015). Fitting this model to the salamander tree, we obtain a maximum
log-likeihood of 513.8 with parameter values λ1 = 0.059, λ2 = 0.44, and µ = 0.0.
This corresponds to an AIC score of -1021.6; this model fits about as well as the
best of the time-varying models but not as well as the diversity dependent model
considered above. Again, though, I am not including plausible combinations of
models, such as protracted speciation that varies through time.

So far, models of protracted speciation remain mostly in the realm of ecological
neutral theory, and are just beginning to move into phylogenetics and evolution-
ary biology (see, e.g., Sukumaran and Lacey Knowles 2017). However, I think
models that treat speciation as a process that takes time – rather than some-
thing instantaneous – will be an important addition to our macroevolutionary
toolbox in the future.

Section 12.5: Summary

In this chapter I discussed models that go beyond constant rate birth-death
models. We can fit models where speciation rate varies across clades or through
time (or both). In some cases, very different models predict the same pattern
in phylogenetic trees, warranting some caution until direct fossil data can be in-
corporated. I also described a model of protracted speciation, where speciation
takes some time to complete. This latter model is potentially better connected
to microevolutionary models of speciation, and could point towards fruitful di-
rections for the field. We know that simple birth-death models do not capture
the richness of speciation and extinction across the tree of life, so these models
that range beyond birth and death are critical to the growth of comparative
methods.

Footnotes

1: Even though this approach requires topology, Morlon et al. (2011) show that
their likelihood is equivalent to other approaches, such as Nee and Maddison,
that rely only on branching times and ignore topology completely. This is
because trees with the same set of branching times but different topologies have
identical likelihoods under this model.
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