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Abstract 

Genetic structure can be influenced by local adaptation to environmental heterogeneity and 

biogeographic barriers, resulting in discrete population clusters. Geographic distance among 

populations, however, can result in continuous clines of genetic divergence that appear as 

structured populations. Here we evaluate the relevant importance of these three factors over a 

landscape characterized by environmental heterogeneity and the presence of a hypothesized 

biogeographic barrier in producing population genetic structure within 13 codistributed snake 

species using a genomic dataset. We demonstrate that geographic distance and environmental 

heterogeneity across western North America contribute to population genomic divergence. 

Surprisingly, landscape features long thought to contribute to biogeographic barriers play 

little role in divergence community wide. Our results suggest that isolation by environment is 

the most important contributor to genomic divergence. Furthermore, we show that models of 

population clustering that incorporate spatial information consistently outperform nonspatial 

models, demonstrating the importance of considering geographic distances in population 

clustering. We argue that environmental and geographic distances as drivers of community-

wide divergence should be explored before assuming the role of biogeographic barriers. 

Key words: comparative phylogeography, biogeographic barriers, generalized dissimilarity 

modeling, community ecology, population structure, gene flow  
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Introduction 

 Population structure across a species’ range is typically produced by isolation by 

distance (IBD), isolation by environment (IBE), or isolation by resistance (IBR). Isolation by 

distance, which is commonly reported in empirical data sets (Pelletier & Carstens, 2018; 

Wang, Glor, & Losos, 2013; Wright, 1943), is defined as spatial auto-correlation in the 

distribution of genetic variation and is the outcome of limited dispersal abilities which 

reduces opportunity for gene flow across the extent of a species’ geographic distribution. 

Limited dispersal therefore results in negative associations with genetic relatedness and 

geographic distance (Vekemans & Hardy, 2004). Because IBD simply correlates Euclidian 

distance in geography and genetic distance, this metric ignores heterogeneity in the 

environment and landscape. By contrast, IBE predicts spatial genetic divergence based on 

environmental differences between sampled demes, regardless of geographic distance (Wang 

& Bradburd, 2014). Isolation by environment can result from several unique processes, such 

as natural selection against immigrants, reduced hybrid fitness or biased rates of dispersal 

(Wang & Bradburd, 2014). Lastly, resistance distances across a heterogeneous landscape can 

structure spatial genetic divergence (McRae, 2006). Such resistance distances are often used 

to capture features of the landscape that may be acting as physically isolating barriers to 

dispersal rather than an adaptive barrier as is the case with IBE. Therefore, IBR may be 

considered the main force driving population structure at biogeographic barriers. Isolation by 

resistance is calculated as the probability that an individual will migrate from one population 

to the other, weighted by a friction to dispersal across unsuitable habitats and/or physical 

barriers (McRae, 2006; Wang & Bradburd, 2014). A pattern of IBR arises when 

characteristics of the landscape modify gene flow between demes such that resistance across 

these landscapes (e.g., across rivers or over mountains) provide a more appropriate predictor 



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved. 

of genetic differentiation than do Euclidean distances or (non-spatial) environmental 

distances (McRae, 2006). 

 One or more of these three patterns may explain patterns of divergence in population 

genomic data and differentiating them may be difficult. In addition, if patterns of IBD 

dominate population genetic structure, inferences of discrete population clusters may be 

spurious (Bradburd, Coop, & Ralph, 2018; Meirmans, 2012), and these spurious inferences 

may also extend to local adaptation to clinal variation in environment. By contrast, sharp 

environmental transitions or migration resistance across biogeographic barriers will likely 

produce discrete population structure. Because distance, environment, and landscape are 

often spatially auto-correlated with one another, failure to examine the effects of all of these 

variables may potentially result in incorrect estimates of the drivers of population divergence 

(Reid, Mladenoff, & Peery, 2017). Taking into account geographic distances, environmental 

variation, and heterogeneity in the landscape will help to understand the factors that facilitate 

adaptation and species diversification.  

Comparative studies of multiple codistributed species can advance our understanding 

of organism-landscape interactions, reveal factors that generate population genetic structure, 

and address whether multiple species are affected in similar ways to shared environments 

(Wang & Bradburd, 2014). Responses to shared landscapes can vary from concordant 

(Jackson et al., 2018), to entirely discordant population genetic structure (Phillipsen et al., 

2015). The degree to which spatial genetic structure is shared across codistributed species 

may be affected by organismal traits (Phillipsen et al., 2015; Reid et al., 2017). For example, 

genomic divergence in taxa with greater dispersal abilities may have little to no signature of 

IBD compared to taxa with lower dispersal abilities (Phillipsen et al., 2015).  
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Within arid, southwestern North America, several studies have demonstrated that 

codistributed species have a signature of population divergence between the Sonoran and 

Chihuahuan Deserts across the Cochise Filter Barrier (CFB; Zink et al., 2001; Pyron and 

Burbrink, 2010; Myers et al., 2017b), potentially making this an important regional 

biogeographic barrier (Figure 1). This region is both geographically and topographically 

complex and provides opportunities for allopatric divergence. The river networks of 

southwestern North America may have also driven allopatric divergence and population 

structure in numerous taxa (e.g., the Pecos River, the Rio Grande, and the Colorado River, 

Figure 1; Wood et al., 2013; Graham et al., 2015; O’Connell et al., 2017; Myers et al., 2019). 

The two deserts are also environmentally heterogeneous, with differences in temperature and 

precipitation (Figure 1). Divergence due to environmental variation across many species 

within an assemblage could potentially lead to codiversifcation at the community level 

(Johnson & Stinchcombe, 2007; Wang & Bradburd, 2014).  

The snake fauna codistributed across southwestern North America is an assemblage 

of ecologically, behaviorally and physiologically diverse taxa that presents an opportunity to 

examine how genomic variation is distributed across the landscape. For example, this 

community is composed of both oviparous and ovoviviparous species (e.g., Lampropeltis 

getula and Trimorphodon biscutatus versus Crotalus spp. and Thamnophis marcianus), 

strictly nocturnal and strictly diurnal taxa (e.g., Hypsiglena torquata versus Masticophis 

flagellum), and taxa that specialize on an invertebrate diet as well as those that feed primarily 

on small rodents (e.g., Sonora semiannulata versus Pituophis catenifer). These differences 

might be reflected in the determinants of population structure (Phillipsen et al., 2015; Reid et 

al., 2017). Previously, it has been shown that many of these snake taxa are reciprocally 

monophyletic in mtDNA gene trees across the CFB (Myers et al., 2017) and that geographic 

distance is an important variable in explaining genetic variation across these taxa. The 
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authors concluded that divergence times were asynchronous among east-west population 

pairs in 12 snake taxon groups, indicating non-shared histories (Myers et al., 2017). 

Furthermore, numerous species delimitation studies have elevated species east and west of 

the CFB (Anderson & Greenbaum, 2012; Cox et al., 2018; Devitt, LaDuc, & McGuire, 2008; 

Mulcahy, 2008; O’Connell & Smith, 2018; Pyron & Burbrink, 2009) while additional studies 

have suggested widespread cryptic diversity within these snake species (Dahn et al., 2018; 

Myers et al., 2017a), therefore distinct population structure is likely present across this 

biogeographic barrier. 

 Given the previous research conducted within this region, we hypothesize that the 

CFB drives population divergence across an entire assemblage of species, all of which are 

widely distributed across arid North America. We predict that IBR will be a key determinant 

of genomic divergence and that the location of the CFB will be concordant with the lowest 

effective migration rates in nearly all species. To test these predictions, we generate a 

reduced-representation genomic data set, analyzing these data with both nonspatial and 

spatial population clustering methods. We then explicitly test for the impacts of IBD, IBE, 

and IBR on genetic structure, as well as quantify which environmental variables and 

geographic features (e.g., climate, riverine barriers or elevation) are most important in 

producing patterns of population genetic structure.  

 

Methods 

Sample Collection 

 A total of 383 tissue samples were obtained throughout the range of each of the 13 

snake species groups studied here (Arizona elegans, Crotalus atrox, Crotalus molossus, 

Crotalus scutulatus, Hypsiglena torquata, Lampropeltis getula, Masticophis flagellum, 

Pituophis catenifer, Rhinocheilus lecontei, Salvadora hexalepis, Sonora semiannulata, 
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Thamnophis marcianus, and Trimorphodon biscutatus), with collecting efforts focused on 

sampling from within the Chihuahuan and Sonoran Deserts. The number of individuals per 

taxon ranged from 15 – 44 and averaged 29.5 (Table 1). Snakes are difficult to collect in 

large numbers and therefore while sampling efforts were focused on collecting these thirteen 

species, samples were often collected opportunistically yet with the goal of broadly sampling 

each species within the Sonoran and Chihuahuan Deserts across the Cochise Filter Barrier. 

 

Generation of Sequence Data 

 Genomic DNA was extracted from muscle or liver tissues using DNeasy kits (Qiagen, 

Valencia, CA, USA) following manufacturer’s protocols. Double stranded DNA 

concentrations were quantified using a Qubit (Thermo Fisher Scientific, Waltham, MA 

USA). We sent up to 30,000 ng of DNA from each sample to Cornell Institute of Genomic 

Diversity for genotyping-by-sequencing (GBS; Elshire et al., 2011). GBS is a technique for 

building reduced representation libraries, similar to other restriction-site associated DNA 

sequencing methods where a restriction enzyme is used to reduce the complexity of the 

genome before sequencing (Elshire et al., 2011). Specifically, the method implemented uses 

methylation-sensitive restriction enzymes which targets low copy regions of the genome 

avoiding repetitive regions (Elshire et al., 2011). Genomic DNA was digested with the Pst1 

enzyme and sample-specific barcode adapters as well as a common adapter were ligated to 

the sticky end of the fragments. Libraries were sequenced on a 100 bp single-end Illumina 

HiSeq 2000 at the Cornell Core Lab Center. 
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Bioinformatics/SNP calling 

 We processed raw Illumina reads using the bioinformatics pipeline pyRAD v.3.0 

(Eaton, 2014) to assemble de novo GBS loci. Each species group was analyzed independently 

and samples were demultiplexed using their unique barcode sequence. The maximum number 

of sites allowed with a Phred score <20 was set to 4 (these sites were changed to N’s), 

minimum sequence depth was set to 10 reads per locus, and we used a clustering threshold of 

90%. All fragments >50 bps were retained. Additionally, we filtered sequences where loci 

with excessive heterozygous sites (>3) were removed to reduce the chances of keeping 

paralogous sequences. Lastly, minimum-taxon coverage was set at 75% of all individuals, 

allowing for 25% missing data per locus in the final sequence alignments. Filtered reads for 

each sample were clustered using vsearch (https://github.com/torognes/vsearch) and aligned 

with MUSCLE (Edgar, 2004). Only one SNP per locus was retained for downstream 

analyses, in order to reduce the possibility of linked SNPs. 

 

Isolation by Distance 

 As an initial exploration of IBD within these data, we fit a linear model between 

genetic distance and Euclidian geographic distance for all sampled individuals, and calculated 

an r
2
 value and p-value. Genetic distances were calculated as absolute genetic distances, 

without making any assumptions regarding mutation or genetic drift (Prevosti’s genetic 

distances; Kamvar, Tabima, & Grünwald, 2014; Prevosti, Ocaña, & Alonso, 1975), in 

adegenet using a matrix of one SNP per locus for each taxon and geographic distances 

between sampling localities were calculated using the R package fossil (Vavrek, 2011). 

 We also implemented the spatial method Estimated Effective Migration Surface 

(EEMS; (Petkova, Novembre, & Stephens, 2015), that is used to find patterns of genetic 

diversity across a landscape that deviate from a null expectation of IBD. We applied this 
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method as an exploratory tool to find regions of the landscape that may act as biogeographic 

barriers in this system (e.g., the Cochise Filter Barrier or major river systems) and to explore 

if there are common patterns shared across taxa. This method is based on a stepping-stone 

model where individuals migrate locally between demes and migration rates are allowed to 

vary by location (Petkova et al., 2015). To capture continuous genetic diversity, the landscape 

is divided into demes and each deme can only exchange migrants with its neighbors. Under 

this model, expected genetic dissimilarities depend on sample location and migration rates 

(Petkova et al., 2015). EEMS explicitly represents genetic differentiation as a function of 

migration rates and correlates genetic variation with geography, producing visualizations that 

highlight portions of a species range where population divergence deviates from patterns 

expected under IBD. These regions are indicative of areas of the landscape that act as barriers 

to gene flow, or conversely promote gene flow acting as species corridors (Richmond et al., 

2017). For example, regions where EEMS identifies spatial genetic patterns that have lower 

than expected effective migration under pure IBD is suggestive of population clustering (i.e., 

a region of lower than expected migration under IBD is potentially a contact zone between 

genetically distinct populations). Using the above genetic distance matrices, we ran EEMS 

using a deme size of 1200 (i.e., the density of populations), with three independent starting 

chains for 5 x 10
6
 MCMC iterations following a burn-in of 1 x 10

6
, with a thinning of 5000 

and different starting seeds, for each taxon. Posterior plots were compared across independent 

runs for each taxon to ensure convergence. These three runs per taxon were combined and 

visualized using the R package reemsplots2 (https://github.com/dipetkov/reemsplots2). 
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Spatial Population Clustering: Spatial vs. Nonspatial 

 Whether genetic divergence should be represented as discrete clusters or continuous 

clines of variation is a well-known problem in population genetics (Bradburd et al., 2018). 

Here we implemented conStruct to avoid this potential issue. conStruct is a model-based 

method that simultaneously infers continuous and discrete patterns of population structure by 

estimating ancestry proportions for each sampled individual from two-dimensional 

population layers, where within each layer a rate at which relatedness decays with distance is 

estimated (Bradburd et al., 2018). This method also allows for a cross validation procedure 

for model selection, between both spatial and nonspatial models as well as the number of 

underlying layers (Bradburd et al., 2018). This analysis allows us to specifically test whether 

population structure con be attributed to IBD versus IBE or IBR. For example, under s 

scenario of pure IBD we would expect conStruct to find a strong support for spatial model a 

single population (K = 1), alternatively if the CFB has structured populations we expect to 

find support for two populations, with geographic distributions that meet approximately at the 

Western Continental Divide. Based on preliminary runs, large amounts of missing data may 

bias results. Therefore, with the unlinked SNP dataset, individual samples missing more than 

75% of genotypes were removed and after these individuals were removed we again removed 

loci to ensure that there was only 25% missing data within a locus (see Table 1). Pruning of 

these data sets was conducted in vcftools (Danecek et al., 2011) and vcf files were converted 

to Structure input files (Pritchard, Stephens, & Donnelly, 2000) using plink (Purcell et al., 

2007). The cross-validation procedure to test between discrete clusters versus continuous 

variation within conStruct was then run for each taxon with K = 1 – 6, or until the predictive 

accuracy reached a value of 0, with 10 repetitions per each K value, 100,000 iterations per 

repetition, and a training proportion of 0.9. When choosing a best fit value of K we required 

that all layers contribute >2% to the total covariance of the model. 
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Determinants of Population Genomic Structure: IBD, IBE, IBR 

 To determine what variables best predict genomic divergence, we implemented 

generalized dissimilarity modeling (GDM; Ferrier et al. 2007). This method is a matrix 

regression technique that models variation in distance matrices by relating dissimilarity in 

genetic distances between sites to differences in environmental distances and the degree to 

which these sites are isolated from one another (e.g., geographical or resistance distances; 

Fitzpatrick & Keller 2015; Thomassen et al., 2010). GDM can fit nonlinear relationships of 

environmental/distance variables to genetic variation through the use of I-spline basis 

functions (Ferrier et al., 2007). This method uses the percent deviance explained as a measure 

of model fit (Fitzpatrick & Keller, 2015). We used this method to simultaneously examine the 

effects that geographic distance, environmental variables, and several potential resistance 

surfaces have on generating genomic divergence. 

 For environmental variables we downloaded the 19 BioClim variables (Hijmans, 

Cameron, Parra, Jones, & Jarvis, 2005) at 30 second resolution. We then reduced this to a set 

of variables such that correlation among variables was <0.7 using the raster.cor.matrix 

function in the ENMTools R package (Warren, Glor, & Turelli, 2010). This resulted in 

retaining nine Bioclim varaibles for use in GDM models (Annual Mean Temperature, Mean 

Diurnal Range, Isothermality, Temperature Seasonality, Mean Temperature of Wettest 

Quarter, Mean Temperature of Driest Quarter, Annual Precipitation, Precipitation of Driest 

Month, and Precipitation Seasonality). Environmental variation for each collecting locality 

for all species was extracted from this set of uncorrelated variables. We used three different 

resistance surfaces that may better reflect patterns of genomic divergence than pure 

geographic distance, these are resistance around major rivers of southwestern North America, 

elevation, and potential geographic distributions based on ecological niche models (ENMs). 
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Major rivers were selected given that numerous studies have suggested that the Pecos River, 

the Rio Grande, and the Colorado River (e.g., Graham et al., 2015; Myers et al., 2019; 

O’Connell et al., 2017; Wood et al., 2013) are barriers to gene flow. Elevation was selected 

as a resistance surface because the Cochise Filter Barrier is often associated with the Western 

Continental Divide (Castoe, Spencer, & Parkinson, 2007), a high elevation region between 

major watersheds in North America and because the Central Mexican Plateau has been 

associated with lineage divergence in previous studies of the same taxa (Schield et al., 2018). 

A shape file of rivers was obtained from https://www.naturalearthdata.com/downloads/50m-

physical-vectors/ and elevation was obtained from https://research.cip.cgiar.org/gis. Both of 

these were converted to an ascii file using the raster library in R (Hijmans & van Etten, 

2012). Lastly, we chose to use ENMs as a resistance surface because potential routes of 

dispersal and gene flow among populations are likely restricted by suitable habitat. ENMs 

were created for each taxon independently by first retrieving 500 locality records from the 

Global Biodiversity Information Facility (GBIF.org) using the R package spocc 

(Chamberlain, Ram, & Hart, 2016). Any records outside the known geographic distributions 

of these species were then removed. Furthermore, occurrences outside our study region were 

then dropped (-126, -90, 18, 50) and thinned so that sampled localities within 50 km were 

removed, using spThin (Aiello-Lammens, Boria, Radosavljevic, Vilela, & Anderson, 2015). 

Using Biomod2 (Thuiller, Georges, & Engler, 2013) we sampled 10,000 pseudoabsence 

points within the study region and Maxent v3.4.1 (Phillips, Anderson, & Schapire, 2006) was 

used to construct ENMs using all 19 bioclim variables. We used all available bioclim 

variables because the regularization method implemented in MaxEnt is stable even if 

variables are correlated, therefore removing potentially correlated variables or preprocessing 

covariates through the use of PCA and selecting only the dominant axes for using analysis is 

unnecessary (Elith et al., 2011). Each analysis was replicated for 5000 iterations, reserving 
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25% of samples as a training dataset for model evaluation, and we created response curves 

and jackknifed our data to measure variable importance. The average of these ENMs were 

then projected and saved as ascii files. The ascii files were normalized to values of 0 – 1. In 

the case of rivers and elevation greater values represent increased resistance rates across the 

landscape (e.g., in the case of potential riverine barriers, rivers = 1 and non-river = 0) and 

were used as resistances in Circuitscape 4.0 (McRae, 2006; McRae et al., 2016) implemented 

in Julia. In the case of ENMs, the ascii files were also normalized to values of 0 – 1, but these 

were used as conductance surfaces in Circuitscape analyses. 

 

 Using GDM, we tested how these geographic distance (IBD), environmental variation 

(IBE; all uncorrelated Bioclim variables), and three models of distance matrices (IBR) 

contribute to genomic divergence. Our previously generated absolute genetic distance 

matrices (from all potentially unlinked SNPs) were used as the response variable and the gdm 

R package (Manion, Lisk, Ferrier, Nieto-Lugilde, & Fitzpatrick, 2016) was used to fit 

generalized dissimilarity models. We also calculated Nei’s D genetic distances from our 

unlinked SNPs and repeated all GDM analyses using this measure of genetic distance as the 

response variable (Nei, 1972). We ran seven independent tests for each taxon with different 

sets of predictor variables: (1) a full model with geographic distance, environmental 

variables, and the resistance surfaces, (2) a model with geographic distance and 

environmental variables, (3) a model with geographic distance and resistance distances, (4) a 

model with environmental variables and resistance distances, (5) a model with environmental 

variables only, (6) distance only, and (7) resistance distances only. We used the gdm.varImp 

function in the gdm R package on on all seven models, which uses a matrix permutation to 

perform model and variable significance testing and estimates variable importance in a GDM. 
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 Because a large percent deviance can be explained in our GDM models, we tested 

whether nucleotide diversity or sample size was correlated with percent deviance explained. 

Nucleotide diversity was calculated for each species in PopGenome (Pfeifer, Wittelsbürger, 

Ramos-Onsins, & Lercher, 2014) package of R. We then fit linear models between nucleotide 

diversity and percent deviance as well as between the total number of samples collected per 

species and percent deviance explained, an r
2
 and p-value were calculated for these two linear 

models. We also tested if environmental variation in the Bioclim variables can be explained 

by geographic distance alone. To do this we used GDM, for each set of collecting localities 

for each taxon. In GDMs we used the 19 BioClim variables as a response variable and 

latitude and longitude as the predictor variables. 

 

Results 

Sequencing and Bioinformatics 

 We generated GBS data for 383 specimens resulting in 1,009,845,311 reads and 72.12 

GB of raw data with an average of 2,120,912.5  1,446,417.4 reads per individual (see 

Supporting Information). After excluding loci with more than 25% missing data, 11,681 – 

46,444 total SNPs and 5,496 – 21,259 SNPs when restricted to one SNP per locus, depending 

on the species group were retained (Table 1). Raw sequence data are available on the NCBI 

Sequence Read Archive (Accession: PRJNA554495) and the assembled GBS data used in 

this study are available on Dryad (doi:10.5061/dryad.2172qg4). 

 

Patterns of IBD 

 The r
2
 values from linear models of correlations between genetic distances and 

geographic distances range from 0.13 – 0.73 (in P. catenifer and C. molossus, respectively) 

and in all cases p-values < 0.05 (Supporting Information). The EEMS analyses highlight 
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regions of lower than expected migration across the geographic distributions of all 13 taxa. 

Many taxa show regions of reduced gene flow that run north to south separating populations 

into the Sonoran and Chihuahuan Deserts (Figure 2; e.g., C. atrox and H. torquata). 

However, within some taxa, the geographic features that might be creating these regions of 

reduced gene flow are less clear and are not strictly associated with the Cochise Filter Barrier, 

nor are there shared, community wide patterns of reduced gene flow (Figure 2). For example, 

rates of migration are reduced across much of the geographic distribution of C. scutualtus and 

not associated with any biogeographic barriers (e.g., these regions are not tightly associated 

with the CFB or major rivers). Likewise, within A. elegans reduced rates of migration are 

inferred across many of the sampling localities within the western portion of this species’ 

range and nearly all of the Sonoran Desert has reduced rates of migration within Sal. 

hexalepis (Figure 2). 

 

Spatial Population Clustering 

 In cross-validation analyses of spatial versus nonspatial population clustering across 

all 13 taxa, a model that includes spatial information outperforms nonspatial models using 

conStruct (Supporting Information). These analyses suggest that incorporating geographic 

information, which may be a reflection of a pattern of IBD, are important for determining the 

number of genetic clusters in all species across this assemblage. These cross-validation 

analyses coupled with a required threshold of 0.02 minimum contribution of each layer to 

total covariance, suggest that between K = 1 – 4 layers sufficiently describe the genomic data 

within each species (Figure 3; Supporting Information). Within C. scutulatus and P. catenifer 

the best support is for a spatial model with K = 1 (e.g., adding an additional layer at K = 2 for 

C. scutulatus only contributed to explaining an additional 0.5% of the model covariance; for 

P. catenifer this additional layer only explained an additional 0.08%; see Supporting 
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Information), suggesting that genomic variation within these two taxa are indicative of a 

continuous cline of ancestry, a pattern of IBD. With the exception of these two groups, 

conStruct results provide strong support for discrete population structure across arid North 

America. Seven species show a strong signal of population divergence across the CFB 

(Figure 3) suggesting that IBR may have influenced population genetic structure in these 

groups. However, the cause of population structure in some species is less clear, for example 

the cause of population structure in R. lecontei, Sal. hexalepis, Son. semiannulata, and Th. 

marcianus are unidentifiable (Figure 3). Maps of all tested levels of K layers are included in 

the Supporting Information for both spatial and nonspatial models. 

 

Determinants of Population Genomic Structure: IBD, IBE, IBR 

 Ecological niche models for all taxa had reasonable performance with AUC values 

ranging from 0.9 (P. catenifer) to 0.97 (C. molossus; Table 2 and Supporting Information for 

projected ENMs). BioClim variables related to temperature, specifically mean temperature of 

the coldest quarter, contributed the most to ENMs in the majority of species (Table 2). Only 

in two taxa, T. biscutatus and Sal. hexalepis, did variables related to precipitation contribute 

more to ENMs than did variables related to temperature (Table 2). Output ascii files for each 

ENM are available from Drayd (doi:10.5061/dryad.2172qg4). 

 When using absolute genetic distances as a response variable, the GDM models that 

account for all possible predictor variables (geographic distance, environmental variation, and 

resistances distances) potentially generating genomic variation across these 13 species 

explained between 35.9 and 95.4% (average deviance of 65.6% 20%) of the total observed 

genomic variation and were significant in all of the 13 species (Table 2). The variables that 

contributed the most to models that included all potential predictor variables varied by taxa 

but most often included geographic distance (9/13 species), and rarely included resistance 
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surfaces generated from Circuitscape (3/13 species; Table 2). In each of the three cases where 

resistance surfaces were important predictor variables, the resistance variable differed (e.g., 

in L. getula elevation was important, where as in P. catenifer resistance distances around 

ENMs were important, and in S. hexalepis rivers as barriers were important). Furthermore, 

the climatic variables of most importance in explaining genomic variation from the full GDM 

models were never the same variables as contributing the most to the generated ENMs (Table 

2). This suggests that the variables that predict the geographic distribution of a species are not 

the same as those promoting population divergence. GDM models which only included 

climatic variables or climatic variables and geographic distance performed nearly as well as 

the full model (i.e., all predictor variables), while the GDM that included only geographic or 

resistances distances predicted much less variation alone (Table 2). Variable importance 

values resulting from model permutations and statistical significance are presented in the 

Supporting Information. The exact predictor variables differed slightly when using Nei’s D 

genetic distances as the response variable instead of absolute genetic distances (Supplemental 

Information). However, models that incorporated environmental variation or environmental 

variation and geographic distances were consistently the top models in explaining Nei’s D 

genetic distances within species, whereas models that only consisted of IBR distances 

explained less genetic differentiation (Supplemental Information). 

 GDM models were also able to explain between 19 – 76.2% of the variation in 

correlations between geographic distance and the climate variables used above, however 

GDM models were inconclusive in several cases suggesting that geographic distance is not 

always correlated with environmental variation across the geographic distribution of these 

thirteen species (Table 2). There was no correlation between observed nucleotide diversity 

and percent deviance explained in GDM models (Supplemental Materials), however there 

was a correlation between the number of samples per species and the deviance in genetic 
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differentiation explained in our GDM models (r
2
 = 0.65, p-value < 0.05). This suggests that 

smaller samples sizes result in a larger percent deviance explained when using GDM models 

(see Supporting Information). 

 

Discussion 

 Using comparative population genomic data across 13 codistributed snake species, we 

demonstrate that isolation by environment and isolation by distance are common patterns in 

population genomic divergence across an entire assemblage. Surprisingly, features of the 

landscape thought to contribute to biogeographic barriers (e.g., differences in elevation, for 

example the CFB, and rivers) play little role in population differentiation. Genetic clustering 

methods that explicitly account for spatial information consistently outperformed nonspatial 

clustering methods, which regularly over-split the number of populations within a species 

(Supporting Information). These spatial clustering analyses demonstrate that some species 

have population structure across the CFB, however, this pattern is inconsistent across the 

entire species assemblage (Figures 2 & 3). Together these results suggest that local 

environmental conditions, not shared biogeographic barriers, are likely driving lineage 

divergence, and importantly the determinants of population divergence are taxon specific. 

 

IBE Plays a Dominant Role in Population Structure 

 For 13 codistributed species, we find that both IBD and IBE contribute to spatial 

genomic divergence and that on average IBE contributes to approximately 2.5 times more 

genomic divergence than does IBD alone (mean IBE 62.0% vs. mean IBD 33.9%; Table 2). 

These two combined variables contributed to a large portion of genomic divergence in all 

taxa (e.g., up to 95.4% in Sal. hexalepis; Table 2), suggesting that our analyses are capable of 

detecting the underlying processes of diversification. Results are consistent across taxa where 
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environmental divergence was always highly predictive of genomic divergence. However, we 

also found that the most important environmental variable in driving genomic divergence 

varied among taxa and it was evenly divided whether temperature or precipitation was the 

most important variable in predicting divergence (Table 2). Therefore, while climatic 

differences are broadly important for driving divergence, the key components of 

diversification are species specific. Because much genomic divergence can be explained by 

environmental heterogeneity, future studies should focus on differential selection and 

functional adaptive differences between populations to separate ecological from historical 

processes in driving speciation within this region (Sobel, Chen, Watt, & Schemske, 2010). 

However, it is important to point out that the amount of genomic divergence explained by 

GDM models is sensitive to the total number of samples included in analyses, where GDM 

models explain more deviance with smaller sample sizes (Supporting Information). However, 

these models are statistically significant (Table 2) as are most of the variables of importance 

using permutation tests (Supporting Information). 

The predominant role of environmental heterogeneity in shaping genomic divergence 

in this system suggests that local adaptation is an important process in structuring populations 

and potentially responsible for species level diversification (Nosil, 2012; Sexton, Hangartner, 

& Hoffmann, 2014; Shafer & Wolf, 2013). However, a dominant role of IBE in promoting 

genomic divergence is not the outcome of other similar studies. For example, the majority of 

mtDNA variation within Caribbean Anolis lizards can be attributed to patterns of IBD (Wang 

et al., 2013). Similarly, genomic variation within Australian skinks is best explained by a 

pattern of IBD (Singhal et al., 2018). Because of the contrasts between these previous studies 

and our results, it is important to highlight that the drivers of genomic divergence may vary 

greatly across taxa under investigation or study region (e.g., differentiation on islands 

compared to continental radiations). 
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 Although comparative population genomics studies can identify correlations between 

landscape and environmental characteristics and population genetic structure, the underlying 

relationship between species traits and genetic variation can be difficult to determine (Reid et 

al., 2017). It is likely that species traits are important in structuring population genetic 

patterns (Zamudio, Bell, & Mason, 2016) and therefore even closely related, codistributed 

species, while subjected to similar landscapes and environmental variation, can have very 

different population structure. For example, all taxa within the tribe Lampropeltinii (A. 

elegans, L. getula, P. catenifer, and R. lecontei) examined here, though closely related 

(divergence time ~12.2 mya; Chen, Lemmon, Lemmon, Pyron, & Burbrink, 2017), have 

unique determinants of population structure (Table 2). This may be an expected outcome of 

such comparative analyses given that previous studies have found landscape genetics patterns 

to be influenced by species-specific dispersal abilities, life history traits or habitat preferences 

(Reid et al., 2017; Robertson et al., 2018). Therefore, understanding differences in species 

specific traits may ultimately help elucidate what landscape features promote connectivity 

and gene flow among populations (Zamudio et al., 2016). However, determining which traits 

are useful for predicting patterns of population genetic structure and gene flow may prove to 

be difficult. For example, codistributed species with very different physiologies and life 

histories can become locally adapted in response to similar environmental variation. Within 

our study taxa, two groups of distantly related taxa have similar determinates of population 

structure. For example, with both A. elegans and Tha. marcianus, genomic distance between 

populations is best explained by both geographic distance and Precipitation of Driest Month 

(Table 2). While these two taxa have broadly overlapping geographic distributions, they are 

very distantly related (diverged approximately ~42 mya; Pyron & Burbrink, 2012) with 

unique physiologies and ecologies; A. elegans is a medium sized, nocturnal, oviparous 

colubrine that preys largely on lizards (Rodríguez-Robles, Bell, & Greene, 1999) and T. 
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marcianus is a semi-aquatic, viviparous species that feeds on fish, anurans, and invertebrates 

(Ernst & Ernst, 2003). Why these two species would have similar responses in population 

genetic structure to environmental heterogeneity is unclear. Additionally, GDM analyses 

demonstrate that geographic distance and Mean Temperature of Driest Quarter are the best 

predictors of population genetic structure in C. atrox, C. molossus, and M. flagellum. It is also 

unclear why these three species have similar determinates of population genetic structure, for 

example, while C. atrox and C. molossus are closely related, they occupied distinct habitats 

across arid North America (C. atrox is found throughout creosote bush/desert flats while C. 

molossus is a higher elevation taxon, rarely found in the desert flats). 

 

Spatial Phylogeography & Co-Vicariance 

It is often assumed that cyclical climatic changes during the Quaternary coupled with 

biogeographic barriers were responsible for lineage formation (Hewitt, 2000). Within arid 

North America numerous studies have cited the CFB as a soft ecological barrier promoting 

diversification across entire communities that are now in secondary contact (Myers et al., 

2017b; Pyron & Burbrink, 2010; Riddle & Hafner, 2006). The CFB has also been described 

as an ecotonal region dividing the Chihuahuan and Sonoran Deserts (Laport & Minckley, 

2013) where there are also climatic gradients from east to west (Figure 1; Schmidt Jr, 1979). 

Additional geographic features throughout the southwest have also been proposed as 

important barriers including major river systems (Graham et al., 2015; Myers et al., 2019; 

O’Connell et al., 2017; Wood et al., 2013) and increases in elevation at the Central Mexican 

Plateau (Bryson, García-Vázquez, & Riddle, 2011; Schield et al., 2018). Our analyses that 

incorporate spatial information to account for continuous genetic variation best fit the 

observed genomic data for 13 codistributed species (Supporting Information), with less than 

half of these taxa showing clear population structure across the CFB (Figure 3), while GDM 
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models suggest little genetic divergence is explained by resistance distances that may be 

indicative of biogeographic barriers (Table 2). This implies that determinants of population 

divergence are dissimilar across many members of a biological community and that the CFB 

as a vicariant biogeographic barrier is not the direct cause of assemblage wide species 

diversification (Figures 2 & 3). The emphasis on identifying and supporting vicariant barriers 

within the field of phylogeography may have hampered our understanding of the direct 

causes of lineage divergence (e.g., Irwin, 2002). The roles of neutral divergence resulting in 

clinal variation (e.g., IBD) and that of ecological differentiation due to climatic variation 

(e.g., IBE) have not been fully appreciated in driving diversification when compared to 

biogeographic barriers promoting allopatric divergence. 

The patterns observed here might be expected to be general to other taxonomic groups 

regionally and likely at other potential biogeographic barriers globally. Because the 

geographic locations of population boundaries appear to be concordant with a physical barrier 

(e.g., a river, ecotone, or elevation) that does not imply that this geologic feature is the root 

cause of population divergence. Therefore, careful interpretation of phylogeographic results 

are necessary, specifically across regions proposed as model systems to understand 

comparative phylogeographic patterns and processes. This is especially important as 

additional genomic datasets are generated to reinvestigate previous studies based on single 

locus analyses. At the CFB, numerous single locus phylogeographic studies suggest this 

region is responsible for lineage divergence (e.g., Pyron and Burbrink, 2010; Myers et al., 

2017b). However, our analyses here suggest that spatial patterns in genomic divergence do 

not match those found in mtDNA analyses, and therefore our understanding of 

phylogeographic barriers and locations of Pleistocene refugia, particularly in regions that are 

currently continuously distributed, may need to be reinterpreted. To fully understand the 

process of speciation and lineage divergence, additional comparative studies from disparate 
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regions of the globe, with sampling across taxonomic diversity, and increased genome scale 

data, are necessary to explore what is really driving lineage divergence and speciation across 

communities. However, we suggest that environmental and geographic distances be explored 

as potential drivers of community-wide divergence before it is assumed that regional 

biogeographic barriers have promoted diversification. 

 

Empirical data may also be prone to over interpretation. For example, forcing discrete 

population clusters on continuous data may result in a confirmation bias regarding regional 

biogeographic barriers. This can occur because new data may be interpreted in a manner that 

is consistent with preconceived ideas of where phylogeographic barriers are thought to occur 

(Carstens, Stoute, & Reid, 2009; Nickerson, 1998). This may incorrectly suggest the presence 

of common biogeographic barriers in comparative studies and ultimately influence all 

downstream phylogeographic analyses, such as isolation with migration models, species 

delimitation, and comparative phylogeography. Phylogeographic studies should routinely 

analyze population genomic data with both discrete and continuous spatial analyses to avoid 

these issues. Notably, the taxa here that do not exhibit strong patterns of IBD have 

qualitatively similar population structure when comparing discrete and continuous population 

clustering results (e.g., C. atrox, H. torquata, and L. getula; Supporting Information). 

Furthermore, while IBE is common in nearly all species, climatic variables are also 

associated with geographic distance (Table 2). Because of auto-correlation between climate 

and distance, the use of spatially explicit models of population clustering should perform well 

given information on geographic distance alone. 
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Conclusions 

Here, using a genomic data set generated across 13 codistributed species, we have 

demonstrated that population divergence across an entire assemblage of snakes has not been 

produced by vicariant biogeographic barriers (e.g., the Cochise Filter Barrier or major rivers). 

This is in contrast to our predictions based on what was previously thought about this region. 

Instead population genetic structure is largely influenced by variation in climate and 

geographic distance between sampled individuals across arid North America, resulting in 

patterns of isolation by environment and isolation by distance, that can explain a large 

proportion of genomic divergence. Given these results, we suggest that future 

phylogeographic studies explore multiple determinates of population structure before 

pointing to proposed biogeographic barriers.  
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Figure 1: Study system. A) The geographic distribution of the Sonoran and Chihuahuan 

Deserts in western North America. B) The major river systems of western North America. C) 

Elevation and the western continental divide. D) Climatic variation averaged across 32.0 and 

32.01 latitude. This latitude corresponds to a transect from the Sonoran Desert through the 

Cochise Filter Barrier into the Chihuahuan Desert, the horizontal solid line represents the 

location of the Western Continental Divide. Data are from WorldClim 

(http://www.worldclim.org/). The x-axis is longitude and y-axes are environmental variables. 

 

Figure 2: EEMS plots for all thirteen species. White areas indicate regions where migration 

rates are consistent with a pattern of IBD, highlighted blue regions have higher than expected 

rates of migration, and orange shaded regions have lower than expected rates of migration. 

Circles on each plot represent sampled localities. A. Arizona elegans; B. Crotalus atrox; C. 

Crotalus molossus; D. Crotalus scutulatus; E. Hypsiglena torquata; F. Lampropeltis getula; 

G. Masticophis flagellum; H. Pituophis catenifer; I. Rhinochelius lecontei; J. Salvadora 

hexalepis; K. Sonora semiannulata; L. Thamnophis marcianus; M. Trimorphodon biscutatus. 

 

Figure 3: Sampling localities and populations inferred from clustering analyses in conStruct 

plotted over the distributions of each species (in gray) and the Western Continental Divide (in 

black, is often used to delineated the Cochise Filter Barrier). Also shown are representatives 

of some of the major lineages of snakes from this study. Each circle represents an individual 

sample, the color of the circle is representative of clustering results where the proportion of 

the color corresponds to the population assignment of that individual. A. Arizona elegans; B., 

O. Crotalus atrox; C. Crotalus molossus; D. Crotalus scutulatus; E. Hypsiglena torquata; F. 

Lampropeltis getula; G. Masticophis flagellum; H. Pituophis catenifer; I., P. Rhinochelius 

lecontei; J. Salvadora hexalepis; K. Sonora semiannulata; L., N. Thamnophis marcianus; M. 

Trimorphodon biscutatus. Geographic distribution data was obtained from the IUCN website 

(iucnredlist.org) for species A. – K, distributions for L. – M. were generated from locality 

information downloaded from VertNet.  
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Table 1: Total number of samples and number of SNPs per taxon used in analyses. 

 

Taxon 

Number 

of 

Samples 

Total 

Number 

of SNPs 

Number 

of 

Unlinked 

SNPs 

Number 

of 

Samples 

Used For 

conStruct 

Analysis 

Number 

of SNPs 

Used For 

conStruct 

Analysis 

A) Arizona 

elegans 
43 18,993 7,438 37 599 

B) Crotalus 

atrox 
44 11,710 7,929 40 3,955 

C) Crotalus 

molossus 
20 15,245 7,784 20 650 

D) Crotalus 

scutulatus 
36 11,681 5,496 32 4,075 

E) Hypsiglena 

torquata 
27 27,202 6,857 25 599 

F) 

Lampropeltis 

getula 

35 12,219 8,236 34 3,622 

G) 

Masticophis 

flagellum 

30 14,443 5,901 29 4,610 

H) Pituophis 

catenifer 
41 13,264 6,351 37 4,466 

I) 

Rhinocheilus 

lecontei 

40 19,809 11,136 35 503 

J) Salvadora 

hexalepis 
15 32,154 18,291 14 2,584 

K) Sonora 

semiannulata 
13 37,607 21,259 12 4,988 

L) 

Thamnophis 

marcianus 

24 22,092 9,948 23 5,970 

M) 

Trimorphodon 

biscutatus 

15 46,444 21,073 14 3,251 
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Table 2: Results from generalized dissimilarity modeling analyses demonstrating the proportion of genomic divergence explained by climate, 

geographic distance, and resistance surfaces, the statistical significance of the full GDM model, as well as the particular variable that best 

explains genomic divergence in each of the full models and the most important climatic variable in predicting ecological niche models. Model 

values in bold represent statistically significant (p < 0.05) values, those not in bold and followed by (NS) are not statistically significant values. 

 

Taxon GDM 

explaine

d – IBD 

+ IBE + 

IBR 

GDM 

explaine

d - 

Distanc

e + 

Climate 

GDM 

explaine

d - 

Distanc

e + 

Resistan

ce 

GDM 

explaine

d - 

Climate 

+ 

Resistan

ce 

GDM 

explaine

d - 

Distanc

e Only 

GDM 

explaine

d - 

Climate 

Only 

GDM 

explai

ned – 

Resist

ance 

Only 

GDM 

Important 

Variables 

ENM Most 

Important 

Variable 

ENM AUC 

values 

A) Arizona 

elegans 

35.9 35.8 13.8 35.9 9 35.8 7.1 Geographic 

Distance, 

Precipitation of 

Driest Month 

Mean 

Temperature 

of Coldest 

Quarter 

0.96 

B) Crotalus 

atrox 

45.8 45.8 36.9 34.8 36.7 34.5 1.28 Geographic 

Distance, Mean 

Temperature of 

Driest Quarter 

Mean 

Temperature 

of Coldest 

Quarter 

0.96 

C) Crotalus 

molossus 

88.7 88.7 69 88.7 66.2 88.7 N/A Geographic 

Distance, Mean 

Temperature of 

Driest Quarter 

Mean 

Temperature 

of Coldest 

Quarter 

0.97 

D) Crotalus 

scutulatus 

71.2 67.8 48.9 71.2 43.8 67 48.8 Mean Diurnal 

Range, Annual 

Precipitation 

Min 

Temperature 

of Coldest 

Month 

0.96 

E) 

Hypsiglena 

torquata 

70.9 70.9 N/A 70.5 29 70.4 N/A Annual 

Precipitation, 

Precipitation 

Seasonality 

Mean 

Temperature 

of Driest 

Quarter 

0.91 
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F) 

Lampropeltis 

getula 

37.9 34.5 36.7 36.5 30.3 33.3 28.2 Geographic 

Distance, 

Elevation 

Mean 

Temperature 

of Coldest 

Quarter 

0.94 

G) 

Masticophis 

flagellum 

67.8 67.5 32.4 66.7 31.5 66.2 27 Geographic 

Distance, Mean 

Temperature of 

Driest Quarter 

Annual Mean 

Temperature 

0.92 

H) Pituophis 

catenifer 

40.3 28.4 37.3 40.1 8.3 28.2 36.5 Geographic 

Distance, ENM 

Mean 

Temperature 

of Warmest 

Quarter 

0.90 

I) 

Rhinocheilus 

lecontei 

63 62.6 48.6 62.8 45.5 61.4 44.7 Geographic 

Distance, 

Isothermality 

Mean 

Temperature 

of Coldest 

Quarter 

0.94 

J) Salvadora 

hexalepis 

95.4 89.2 90 95.4 N/A 89.2 85 Temperature 

Seasonality, 

Rivers 

Annual 

Precipitation 

0.96 

K) Sonora 

semiannulata 

78.3 78.3 40.1 75.6 32.6 74.3 36.6 Mean 

Temperature of 

Driest Quarter, 

Precipitation 

Seasonality 

Temperature 

Seasonality 

0.95 

L) 

Thamnophis 

marcianus 

85 84.8 41.1 84.2 40.2 83.9 16.3 Geographic 

Distance, 

Precipitation of 

Driest Month 

Min 

Temperature 

of Coldest 

Month 

0.96 

M) 

Trimorphodo

n biscutatus 

73.8 73.9 43.7 73.3 

(NS) 

18.0 

(NS) 

73.1 33 Geographic 

Distance, 

Annual 

Precipitation 

Precipitation 

of Driest 

Month 

0.96 
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Supporting Information: 

Appendix 1: Specimens used in these analyses, including the number of raw sequence reads 

per individual, and collecting latitude and longitude. 

Appendix 2: Plots of geographic distance and genetic distances suggesting a strong pattern of 

isolation-by-distance in these data. 

Appendix 3: Cross validation plots from conStruct analyses showing support for each value 

of K for both spatial and nonspatial clustering analyses. Results from spatial analyses are 

shown in red, which consistently outperform nonspatial analyses, shown in blue. 

Appendix 4: Layer contribution for all possible tested layers in each taxon for both spatial 

and nonspatial analyses in conStruct. For each value of K, equal number of contributions are 

plotted. 

Appendix 5: Alternative levels of K, inferred from conStruct, showing results from both 

spatial and nonspatial models. 

Appendix 6: Projected ecological niche models for all 13 study species. 

Appendix 7: Results of tests for environmental variation being explained by geographic 

distances. 

Appendix 8: Variable importance values resulting from model permutations and statistical 

significance in GDM analyses. 

Appendix 9: Results from GDM using Nei’s D genetic distances as response variable. 

Appendix 10: Plots of nucleotide diversity versus percent deviance explained and total 

number of genetic samples versus percent deviance explained in GDM models.  
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