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Macroevolutionary inferences from molecular phylo-
genies are becoming increasingly common (see Harvey
et al., 1996; Mooers and Heard, 1997; Pagel, 1999;
Barraclough and Nee, 2001). Many methods in which
phylogenies are invoked for historical inference assume
that a molecular phylogeny is an errorless representa-
tion of the underlying phylogenetic history of the in-
cluded taxa (but see Lutzoni et al., 2001; Huelsenbeck
et al., 2000; Huelsenbeck and Rannala, 2003). However,
molecular phylogenies are estimates of this history based
on a particular model of evolution; thus, there is some
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error associated with their estimation (Huelsenbeck and
Kirkpatrick, 1996). Here we explore the effects of a par-
ticular type of error in phylogenetic branch-length es-
timation, that caused by assuming an underparameter-
ized model of molecular evolution, on the γ -statistic of
Pybus and Harvey (2000), a statistic that tests for changes
in the rate of diversification through time. Although we
restrict our attention to the estimation of diversification
rates, our findings are germane to any macroevolution-
ary inferences relying on the accurate estimation of phy-
logenetic branch lengths such as molecular dating (e.g.,
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Welch and Bromham, 2005) and probabilistic methods
for ancestral state reconstruction (e.g., Ronquist, 2004).

In phylogenetic analyses, models of molecular evolu-
tion are often used to estimate branch lengths so that
distances separating species on the reconstructed phy-
logeny are proportional to the time since the species
shared a common ancestor multiplied by the substitu-
tion rate on the branches separating the taxa (Felsenstein,
2004). When recovering these branch lengths, models of
nucleotide substitution are necessary to correct for the
effect of superimposed substitutions as genetic differ-
ences between taxa accrue. Such models vary from sim-
ple to complex. The simplest model, the Jukes and Cantor
(1969) model, assumes that all types of nucleotide substi-
tutions are equiprobable, that all sites share a common
substitution rate, and that base frequencies are equal.
If these assumptions are violated, distances calculated
using a Jukes-Cantor correction will likely be underes-
timates of the actual extent of evolutionary divergence,
with misestimation particularly severe for branches con-
necting more divergent sequences (Yang et al., 1994;
Lemmon and Moriarty, 2004). More sophisticated mod-
els allow rate heterogeneity across sites (Uzzell and
Corbin, 1971; Jin and Nei, 1990), incorporate invariant
sites (Hasegawa, 1987), or allow specific types of substi-
tutions to occur at different rates (Kimura, 1980; Lanave
et al., 1984; Felsenstein, 2004). The most heavily param-
eterized model commonly used in phylogenetic stud-
ies (the general time reversible model with invariant
sites and �-distributed rate heterogeneity, GTR + I + �:
Uzzell and Corbin, 1971; Jin and Nei, 1990; Rodrı́guez
et al., 1990) requires the specification of 10 parameters
(Felsenstein, 2004).

In phylogenetic analyses, models of molecular evolu-
tion are often used to estimate branch lengths so that
distances separating species on the reconstructed phy-
logeny are proportional to the time since the species
shared a common ancestor multiplied by the substitu-
tion rate on the branches separating the taxa (Felsenstein,
2004). When recovering these branch lengths, models of
nucleotide substitution are necessary to correct for the
effect of superimposed substitutions as genetic differ-
ences between taxa accrue. Such models vary from sim-
ple to complex. The simplest model, the Jukes and Cantor
(1969) model, assumes that all types of nucleotide substi-
tutions are equiprobable, that all sites share a common
substitution rate, and that base frequencies are equal.
If these assumptions are violated, distances calculated
using a Jukes-Cantor correction will likely be underes-
timates of the actual extent of evolutionary divergence,
with misestimation particularly severe for branches con-
necting more divergent sequences (Yang et al., 1994;
Lemmon and Moriarty, 2004). More sophisticated mod-
els allow rate heterogeneity across sites (Uzzell and
Corbin, 1971; Jin and Nei, 1990), incorporate invariant
sites (Hasegawa, 1987), or allow specific types of substi-
tutions to occur at different rates (Kimura, 1980; Lanave
et al., 1984; Felsenstein, 2004). The most heavily param-
eterized model commonly used in phylogenetic stud-

ies (the general time reversible model with invariant
sites and �-distributed rate heterogeneity, GTR + I + �:
Uzzell and Corbin, 1971; Jin and Nei, 1990; Rodrı́guez
et al., 1990) requires the specification of 10 parameters
(Felsenstein, 2004).

Numerous studies have characterized the sensitivity
of phylogenetic reconstruction to model misspecifica-
tion (e.g., Fukami-Kobayashi and Tateno, 1991; Olsen,
1991; Ruvolo et al., 1993; Yang et al., 1994, 1995; Gaut and
Lewis, 1995; Adachi and Hasegawa, 1995). Often, topo-
logical inference has been found to be robust to model
misspecification even when branch lengths are severely
misestimated (e.g., Fukami-Kobayashi and Tateno, 1991;
Gaut and Lewis, 1995; Håstad and Björklund, 1998;
Lemmon and Moriarty, 2004). Ignoring heterogeneity
in substitution rate among sites has the most severe
effect on branch lengths, causing them to be consis-
tently underestimated (Yang et al., 1994; Gaut and Lewis,
1995).

The γ -statistic of Pybus and Harvey (2000) measures
the relative positions of internal nodes in a tree (Pybus
and Harvey, 2000) and is defined as:
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where n is the number of taxa in the phylogeny, and g2,
g3, g4, . . . , gn are the ordered internode intervals from the
root (Pybus et al., 2002). Under constant-rate pure-birth
cladogenesis, the γ -statistic has a standard normal dis-
tribution (Pybus and Harvey, 2000). If γ is significantly
less than zero, internal nodes are concentrated closer to
the base of the tree than expected under a constant-rate
model of diversification, suggesting that the net diver-
sification rate of the group has slowed over time; con-
versely, positive γ indicates that more internal nodes are
concentrated near the tips of the tree and suggests that
the net rate of diversification has increased through time
(Pybus and Harvey, 2000; Pybus et al., 2002).

In several empirical studies, the γ -statistic shows
highly significant departures from constant-rate pure-
birth cladogenesis (Harmon et al., 2003; Linder et al.,
2003; Shaw et al., 2003; Kadereit et al., 2004; Machordom
and Macpherson, 2004; Williams and Reid, 2004; Zhang
et al., 2004). Several of these studies reveal slow-downs
in the net rate of diversification through time (Harmon
et al., 2003; Kadereit et al., 2004; Machordom and
Macpherson, 2004; Williams and Reid, 2004; Zhang et al.,
2004). For example, Harmon et al. (2003) found highly
significantly negative γ in three of four lizard groups,
with the fourth also negative but nonsignificant, and
Kadereit et al. (2004) found similar results amongst sev-
eral genera of alpine plants. In each case the authors
hypothesized that geographical or ecological processes
contributed to the observed patterns. In contrast, Linder
et al. (2003) found significantly positive γ among African
Restionaceae.
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Considerable attention has been paid to the effect of in-
complete taxonomic sampling (Pybus and Harvey, 2000;
Pybus et al., 2002) and the method of phylogenetic ul-
trametricization (Barraclough and Vogler, 2002; Martin
et al., 2004; Rüber and Zardoya, 2005) on the estimation
of γ . However, the effect of the assumptions of phy-
logenetic inference, and in particular the model of se-
quence evolution, has been given relatively short shrift.
Many phenomena of interest to evolutionary biologists,
such as the estimation of diversification rates, rely on
phylogenetic branch lengths as estimates of the tempo-
ral extent of evolutionary divergence, and branch-length
estimation is highly sensitive to proper model specifica-
tion (e.g., Fukami-Kobayashi and Tateno, 1991; Ruvolo
et al., 1993; Gaut and Lewis, 1995; Håstad and Björklund,
1998; Lemmon and Moriarty, 2004). As such, assessment
of substitution model adequacy, a criterion that may
be rarely satisfied by empirical data if the process of
molecular evolution is considerably more complicated
than our models describe (see Goldman, 1993), is crucial
when evolutionary parameters are to be estimated from
a molecular phylogeny with branch lengths.

Because the γ -statistic depends on branch length es-
timates, it may be adversely affected by estimating
branches in the molecular phylogeny using an under-
specified or inadequate model. In fact, Pybus and Harvey
(2000) note that the statistic is liable to be misestimated if
factors affecting error in branch-length estimation act un-
evenly in the tree. Here we analyze the extent of the bias
in γ resulting from nucleotide substitution model under-
parameterization and focus on characterizing its magni-
tude and direction, as well as its interaction with other
factors such as tree balance, tree size, total tree depth,
and sequence length. We also describe the particular cir-
cumstances under which these potential biases are likely
to be a concern for empirical studies.

SIMULATION AND ANALYSES

As we are primarily interested in testing the effect of
model under parameterization on the estimation of γ ,
most of our analyses focus on relatively simple mod-
els of molecular evolution that vary with respect to a
limited number of critical parameters (e.g., number of
substitution parameters, rate heterogeneity among sites,
invariant sites), while ignoring variation in tree balance,
number of taxa, tree length, and size of the nucleotide
data set. However, because these factors invariably dif-
fer among empirical studies and likely influence the es-
timation and hypothesis testing of γ , we also explore
the impact of these additional factors using a somewhat
more restricted set of simulations. Finally, because em-
pirical studies usually use more heavily parameterized
models of nucleotide substitution than those explored in
the aforementioned analyses, we investigate the effect of
more complicated models of sequence evolution on the
estimation of γ .

Simulation Test for Effect of Underparameterization

We used simulations of phylogenies and associated
nucleotide data sets to test the effect of model parame-

terization on the estimation of γ under a range of condi-
tions. We first used the program Phyl-O-Gen (Rambaut,
2002) to simulate 100 phylogenies containing 100 taxa
under a constant-rate pure birth model—the null model
assumed by Pybus and Harvey (2000) for the γ -statistic.
This set of 100 trees was used in the majority of the anal-
yses described below.

We then used the program Seq-Gen (Rambaut and
Grassly, 1997) to simulate 1000 base-pair data sets on
each phylogeny under three of different models of molec-
ular evolution and a range of parameter values for each
model: (1) the Jukes-Cantor model (JC; Jukes and Cantor
1969) with heterogeneous rates among sites, under a four
category discrete approximation of �-distributed rate
heterogeneity (JC + �; Uzzell and Corbin, 1971; shape
parameter of the � distribution α� = 0.1, 0.5, 1.0, 5.0, and
10.0; Jin and Nei, 1990); (2) the Jukes-Cantor model with
invariant sites (JC + I; proportion of invariant sites, p-
inv = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9; Hasegawa
et al., 1987); and (3) the K80 model (also known as the
Kimura 2-parameter model; Kimura, 1980), in which
transitions and transversions are allowed different rates
(transition : transversion ratio κ = 0.5, 1, 2, 4, 8, and 16).
For each simulated data set, we scaled total tree length
to 0.5 substitutions per site.

For each simulated data set, we estimated maximum
likelihood branch lengths using PAUP∗4b10 (Swofford,
1998) while constraining the correct topology and as-
suming a molecular clock under two models: (1) the
generating model (JC+�, JC+I, or K80) with its known
parameter value, and (2) the simpler JC model. We then
calculated γ for each of the trees with estimated branch
lengths. All γ calculations were performed using a C
program, ltt.c, available from the authors upon request.

Because all phylogenies were simulated under a pure-
birth model with a constant speciation rate over time,
we expect that γ will have a standard normal distribu-
tion. Thus, we calculated one-tailed type I error rates as
the proportion of data sets for which the value of γ for
the estimated phylogeny was significant (i.e., fell below
95% of the standard normal distribution). We focus on
the left tail of the distribution because a one-tailed rejec-
tion threshold is often applied in empirical studies (e.g.,
Pybus and Harvey, 2000; Harmon et al., 2003; Kadereit
et al., 2004). We also calculated bias as the average differ-
ence between the estimated value of γ and its true value.
We assessed the significance of the type I error rate by
comparing it to the one-tailed 95% binomial confidence
limit assuming that the true type I error rate of the statis-
tic was 0.05. We considered the elevation in type I error
significant if it exhibited a value in excess of this limit.

Tree Balance
Because tree balance can influence phylogenetic re-

construction (Heard, 1992; Huelsenbeck and Kirkpatrick,
1996; Mooers et al., 1995; Mooers and Heard, 1997),
we calculated mean corrected I ′ (a metric for assess-
ing tree balance: Fusco and Cronk, 1995; Purvis et al.,
2002; Agapow and Purvis, 2002) for each of the 100 sim-
ulated trees using a C program (balance.c) available from



976 SYSTEMATIC BIOLOGY VOL. 54

TABLE 1. Empirical parameters used to test the effect of model underparameterization when data were simulated using realistic models and
parameter values.

Rate matrix Base frequencies

Model Gene AG AC AT GC GT CT %A %C %G %T α� p-inv Source

a RAG-1 1.33 4.70 0.92 0.86 5.72 1.0 0.30 0.22 0.23 0.25 1.71 0.34 Townsend et al. (2004)
b ND-2 0.36 2.59 0.50 0.32 2.48 1.0 0.41 0.34 0.06 0.19 0.57 0.10 Townsend et al. (2004)
c ND-2 1.13 16.7 0.84 1.42 12.8 1.0 0.40 0.20 0.07 0.33 0.67 0.28 Kozak et al. (2005)

the authors. For a subset of our simulated data sets, we
tested for a significant relationship between the deviation
of γ from its true value and the mean corrected imbal-
ance of the simulated phylogeny. For this analysis, we fo-
cused on data sets simulated under JC+� with α� = 0.5,
JC+I with p-inv = 0.5, and K80 with κ = 16, with associ-
ated branch-length estimates made assuming an under-
parameterized substitution model (JC), because each of
these cases showed substantial bias in γ (see Results).

Number of Taxa, Total Tree Length, and Sequence Length

To investigate the effect of number of taxa, total tree
length, and sequence length on the estimation and
hypothesis testing of γ we restricted our attention to a
single substitution model, JC+� with α� = 0.5. We sim-
ulated sequences on pure-birth phylogenies containing
various numbers of taxa, while varying total tree length.
To do this, we simulated 100 stochastic phylogenies
that included 10 to 100 taxa at intervals of 10 taxa. We
then simulated sequences with 1000 characters on each
of these topologies while scaling total tree length to
between 0.1 and 1 at intervals of 0.1 substitutions per
site. We also simulated sequence data sets with varying
numbers of characters, again while varying total tree
length. We simulated data sets on 100 taxon phylogenies
with nucleotide sequence lengths ranging from 100
to 1000 at 100-nucleotide intervals and used the same
range of total tree lengths as in the previous analysis.
We then estimated branch lengths, again constraining
to the correct topology, for each resulting data set
assuming both the generating model (JC+�) and the
underparameterized model (JC). For each phylogeny
with estimated branch lengths we calculated γ , and for
each set of phylogenies (corresponding to an estimation
model and a set of tree length and number of taxa or
sequence length) we calculated mean deviation from
the true γ , and type I error rate in γ (with its associated
binomial probability assuming no bias) for both the full
and underparameterized models.

More Complex Models

One limitation of the above simulations is that em-
pirical studies usually use more complex models to
estimate branch lengths than the JC and K80 models
discussed above. Furthermore, parameters are often es-
timated from the data rather than known a priori. To
investigate the behavior of γ under more realistic condi-
tions, we simulated sequence data under the most com-
plex model that is commonly employed in molecular
phylogenetic studies, the general time reversible model
with invariant sites and �-distributed rate heterogeneity

(GTR+I+�: Uzzell and Corbin, 1971; Jin and Nei, 1990;
Rodrı́guez et al., 1990). Because this model has 10 param-
eters, we could not reasonably explore the entire param-
eter space in our simulations; instead, we used three sets
of substitution rates, base frequencies, invariant sites,
and rate heterogeneity drawn from empirical studies
of mitochondrial DNA and a nuclear intron (Table 1;
Townsend et al., 2004; Kozak et al., 2005). For each set of
parameters, we simulated a single 1000-nucleotide data
set on each of five pure-birth phylogenies generated us-
ing Phyl-O-Gen, with 100 taxa per phylogeny and total
tree length scaled to 0.5 substitutions per site. We then
used maximum likelihood in PAUP∗4b10 to estimate pa-
rameter values and branch lengths on these topologies
under the full model (GTR+I+�) and seven models rep-
resenting special cases of the generating model: JC, F81
(Felsenstein, 1981), HKY (Hasegawa et al., 1985), TrN
(Tamura and Nei, 1993), TIM (Rodrı́guez et al., 1990),
GTR (Rodrı́guez et al., 1990), and GTR+I (Hasegawa et
al., 1987; Rodrı́guez et al., 1990). We then calculated γ
for these estimated phylogenies and compared these es-
timates to their known values.

RESULTS

Simulation Test for Effect of Underparameterization

For data generated under a range of rate hetero-
geneities, γ is unbiased and exhibits appropriate type
I error rates when estimated under the correct model
(JC+�) (Fig. 1a, b, open dots). In contrast, γ is strongly
negatively biased, with elevated type I error rates, when
branch lengths for molecular sequences simulated with
moderate to high degrees of rate heterogeneity (� shape
parameter, α� = 0.1–1) are estimated with the under-
parameterized model (JC), which does not incorporate
rate heterogeneity (Fig. 1a, b, filled dots). For extreme
rate heterogeneity, bias resulting from model under-
parameterization corresponds with conspicuously short
early branches and relatively long late branches in the
reconstructed phylogeny (compare Fig. 2a to Fig. 2c), an
effect absent from the phylogeny in which branch lengths
are estimated using the generating model (Fig. 2b). Not
surprisingly, therefore, type I error rates with the under-
parameterized model are highest (up to 0.82) for the data
sets simulated under the highest degree of rate hetero-
geneity (Fig. 1b). This bias persists, but becomes slight as
rates become more uniform across sites (α� ≥ 5; Fig. 1a,
b). At α� ≥ 5 the underparameterized model of sequence
evolution no longer exhibits significantly elevated type
I error (Fig. 1b).
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FIGURE 1. Mean and SD of the deviation from true γ and one-tailed type I error rates for γ from simulated molecular phylogenies with
branches estimated under fully parameterized (open dots) and under parameterized models of sequence evolution (filled dots). Full models are
(a) and (b) Jukes-Cantor with �-distributed rate variation among sites for various values of the � shape parameter, α� ; (c) and (d) Jukes-Cantor
with invariant sites, for various proportions of invariant sites; and (e) and (f) Kimura two-parameter for various values of κ , the ratio of transition
to transversion rate. One-tailed type I error is calculated as the frequency of estimated γ < −1.645. The rate (0.05) and 95% confidence threshold
for the rate of type I error expected by chance are indicated by dashed and solid horizontal lines, respectively.

When sequences are simulated under a model that in-
corporates invariant sites (JC+I) and branch lengths are
estimated using the fully parameterized model, γ is un-
biased with appropriate type I error rates (Fig. 1c, d).
However, γ is negatively biased when estimated using
the under-parameterized model that lacks the invariant

sites parameter (JC) for even moderate proportions of in-
variant sites (p-inv = 0.2), with the magnitude of the bias
increasing with the proportion of invariant sites (Fig. 1c).
Despite this bias, underparameterization results in only
insignificantly or marginally significantly elevated type
I error when the proportion of invariant sites is relatively
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FIGURE 2. Example stochastic pure-birth phylogeny with branch lengths (a) on which sequences were simulated using JC+� with shape
parameter α� = 0.1. Phylogenies with estimated branch lengths assuming (b) the generating model, JC+�, and (c) the underspecified model, JC.
To highlight relative changes in branch lengths, total tree lengths have been rescaled to be the same in all three phylogenies.

low (Fig. 1d). For proportions of invariant sites between
0.1 and 0.4, one-tailed type I error rates are ≤0.11. How-
ever, as invariant sites are increased above p-inv = 0.5,
type I error increases (Fig. 1d) such that all γ values are
significant at p-inv = 0.9.

When simulated sequence data is evolved under the
K80 model, which incorporates different rates of tran-
sitions and transversions, and branch lengths are esti-
mated with the fully parameterized model of sequence
evolution, γ is unbiased (Fig. 1e) and type I error is low
(Fig. 1f). Although γ is slightly biased when estimated
under JC (Fig. 1e), the observed bias is of lower mag-
nitude over all tested values of the ratio of transitions
to transversions (0.25 ≤ κ ≤ 16) than that created by rate
heterogeneity or invariant sites (Fig. 1) and does not lead
to significantly elevated type I error rates except at the
most extreme value of κ tested in this study, at which
point type I error is only marginally elevated (κ = 16:
type I error = 0.12; Fig. 1f).

Tree Balance
There was no significant correlation between tree im-

balance and the deviation from true γ when an under-
specified model was used in branch-length estimation
for any of the models tested (JC+�, α� = 0.5: r2 = 0.02,
P = 0.17; JC+I, p-inv = 0.5: r2 = 0.005, P = 0.49; K80,
κ = 16: r2 = 0.006, P = 0.46).

Number of Taxa, Total Tree Length, and Sequence Length

When sequences were evolved and branch lengths es-
timated under the generating model (JC+�), mean de-

viation from true γ was low across all tree depths and
numbers of taxa (Fig. 3a). Type I error rates were also low
(Fig. 3c), and in no instance was type I error significantly
inflated (Fig. 3e). In contrast, when branch lengths were
estimated using the underparameterized model (JC), de-
viation from true γ was negative under all combinations
of tree size and length, but most severe for long trees in-
cluding many taxa (Fig. 3b). One-tailed type I error rates
are significantly elevated for trees of length longer than
0.5 substitutions per site, regardless of the number of taxa
(Fig. 3f).

When branches were estimated using the full model
(JC+�), deviation from true γ was low except in data
sets with very short trees and small sequence length,
for which substantial positive bias in γ was observed
(Fig. 4a). One-tailed type I error rates were not signif-
icantly different from 0.05 for all combinations of se-
quence length and tree depth (Fig. 4c, e). When branch
lengths were estimated ignoring rate heterogeneity, de-
viation from true γ is severe and negative (Fig. 4b),
leading to significantly elevated type I error rates for
all but the shortest tree depths regardless of sequence
length (Fig. 4d, f). For very short sequence length and
tree length, there is a slight positive bias in γ (Fig. 4b).

Complex Models

In all cases when sequences were simulated under em-
pirically derived parameter values for the GTR+I +�
model, γ is significantly negatively biased when the
simplest models (JC, F81) are used to estimate branch
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FIGURE 3. Mean deviation from true γ for simulated molecular phylogenies of various size and total length with branches estimated under
the fully parameterized (a) and underparameterized models of sequence evolution (b). Full model is the generating model: JC+� with shape
parameter α� = 0.5, whereas the underparameterized model is JC with homogeneous rates among sites. One-tailed type I error rates, calculated
as in Figure 1, are also shown for the full (c) and underparameterized (d) models, with binomial significances of the one-tailed type I error in (e)
and (f). Each tree size and length combination was explored with 100 simulated trees and data sets. Note that the axes are reversed in (a) and (b)
for clarity.

lengths. Minor improvement in γ is observed when more
substitution types are included in the model (models
HKY and GTR), but γ is still significantly negatively
biased. There is also some improvement when invari-
ant sites are included (model GTR+I), but γ values are
not unbiased until the correct model (GTR+I+�) is used
(Fig. 5). Although the magnitude of the bias depends on

the particular parameter values used, the general pat-
terns are the same in each case.

DISCUSSION

Model underparameterization can lead to significant
negative bias and inflated type I error in the γ -statistic
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FIGURE 4. Mean deviation from true γ for simulated molecular phylogenies of various total tree depths whose branch lengths were estimated
from simulated data sets of varied sequence length using the fully parameterized (a) and underparameterized models of sequence evolution (b).
Full model is the generating model: JC +� with shape parameter α� = 0.5; underparameterized model is JC with homogeneous rates among
sites. One-tailed type I error rates, calculated as in Figures 1 and 2, are also shown for the full (c) and underparameterized (d) models, with
binomial significances of the one-tailed type I error in (e) and (f). In (a) and (b) the axes are reversed for clarity.

of Pybus and Harvey (2000) calculated from molecular
phylogenies. In other words, model underparameteriza-
tion may lead to a spurious pattern of rapid cladogenesis
early in a group’s history. This problem is particularly
severe when rate heterogeneity (�) is ignored (see also
Lemmon and Moriarty, 2004) but is also significant if

the invariant sites parameter (I) is excluded and when
highly unequal transition and transversion rates (κ) are
ignored (Fig. 1). The finding that underparameterization
leads to negatively biased values of γ is concordant with
the observation that branch lengths are more severely
underestimated early rather than late in the tree when
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FIGURE 5. Mean deviation from true γ for data simulated using
empirical parameters. Simulation models were GTR+I+� with various
parameter values as listed in Table 1. Shown is the mean and SD of the
deviation from true γ from trees with branch lengths estimated under
a range of models from simple to complex.

they are estimated using an underspecified substitution
model (Gojobori et al., 1982; Kuhner and Felsenstein,
1994). However, the large magnitude of the effect (type
I error = 1.0 in some cases) highlights the importance of
assessing model adequacy before carrying out analyses
of diversification, such as the γ test, on molecular phy-
logenies with branch lengths.

In considering the consequences of this finding, a dis-
tinction must be drawn between model selection, such as
the likelihood ratio–based method implemented in Mod-
elTest (Posada and Crandall, 1998), and tests of model
adequacy (see Goldman, 1993; Bollback, 2002). Tests of
model adequacy consider the absolute, rather than the
relative, fit of the data to the prescribed model: such
tests may indicate that even the most heavily parame-
terized model available for phylogenetic analyses (e.g.,
GTR+I+�) is inadequate despite the fact that it has been
selected by a relative criterion such as the likelihood ra-
tio test. Although absolute model adequacy can now be
assessed using several methods (e.g., Goldman, 1993;
Bollback, 2002; also described in Lemmon and Moriarty,
2004), such tests are stringent and may reject the ade-
quacy of all available models when applied to empirical
data sets (see Goldman, 1993).

For the time being, then, we recommend that signifi-
cantly negative γ be considered cautiously in empirical
studies in which model adequacy has not been assessed
or in which model adequacy has been rejected. It may be
possible to further increase model adequacy—and the re-
sulting accuracy of γ estimation—for empirical data sets
by modeling additional aspects of rate heterogeneity that
can now be incorporated into modern phylogenetic anal-
yses. For example, Bayesian analyses as implemented in
MrBayes (Ronquist and Huelsenbeck, 2003) may be con-
ducted with data sets that are divided into several parti-
tions for which parameters are independently estimated.

It may also be useful to consider the length of the tree,
the number of taxa, and the number of characters used in
the analysis when considering the potential for bias in the
γ -statistic as a consequence of model inadequacy. Trees
of very short length were not particularly susceptible to
type I error in the γ -test, nor were trees containing few
taxa. For long trees, in which branches contain many su-
perimposed substitutions, the consequences on γ due to
model misspecification are much more severe. For such
trees, adding more taxa actually increases the power of
the γ -statistic to detect spurious results such that even
mild apparent deviations from constant-rate speciation,
whether real or an artifact of model underparameteriza-
tion, are statistically significant. Thus, our results suggest
that trees of long length, trees containing many taxa, or
trees featuring both of these properties are particularly
susceptible to bias in the estimation and hypothesis test-
ing of diversification rates using the γ -statistic.

Short sequence length has an opposite ef-
fect on the γ -statistic to that inflicted by model
underparameterization. Short sequence length results
in some internodes lacking substitutions entirely. Their
length is estimated to be very short regardless of the
model of nucleotide substitution used in the analysis.
Because there are more branches towards the tips of any
phylogenetic tree, this phenomenon results in positively
inflated γ , particularly when sequence and tree lengths
are very short. However, for the range of sequence
lengths used in empirical studies, the magnitude of
this positive bias is small relative to the effect of model
underparameterization.

Although we restrict our attention to the γ -statistic of
Pybus and Harvey (2000), the observation that model
underparameterization can lead to severe bias in tree
shape extends to other evolutionary inferences that rely
on unbiased estimates of phylogenetic branch lengths.
For example, comparative methods often assume that
the probability of character change on a given branch
is proportional to the branch length (e.g., Harvey and
Pagel, 1991; Pagel, 1994). Under conditions such as those
described above, where oversimplified models are used,
such methods will tend to concentrate more change on
less severely underestimated, later branches, and less on
earlier branches, than if their true lengths were known
without error.

CONCLUSIONS

Our analyses suggest that model underparameteri-
zation leads to strong negative bias in the estimation
of Pybus and Harvey’s γ statistic, which may result in
the incorrect inference that the rate of cladogenesis has
slowed in the course of a group’s history. The observation
of a decreasing rate of cladogenesis over time is not unex-
pected, having both theoretical justification (Walker and
Valentine, 1984; Hubbell, 2001) and empirical support
from paleontological studies (e.g., Sepkoski, 1978, 1979).
However, in some cases, molecular phylogenetic studies
that recover this pattern via estimation of the γ -statistic
must be viewed with caution. Tests of absolute model
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adequacy, such as that described in Bollback (2002), have
the potential to alleviate this problem, but are often likely
to reject all available models (e.g., Goldman, 1993). Fail-
ure in a test of absolute model adequacy is of consid-
erable concern particularly if tree length and sequence
length are very long, and if the tree contains many taxa.
If the preferred model is found to be inadequate by ab-
solute criteria, any observation of negative γ should be
interpreted with caution.
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