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Ascidian species (Tunicata: Ascidiacea) usually have tailed, hatching tadpole

larvae. In several lineages, species have evolved larvae that completely lack

any tail tissues and are unable to disperse actively. Some tailless species

hatch, but some do not hatch before going through metamorphosis. We

show here that ascidian species with the highest speciation rates are those

with the largest range sizes and tailed hatching larval development. We

use methods for examining diversification in binary characters across a posterior

distribution of trees, and show that mode of larval development predicts

geographical range sizes. Conversely, we find that species with the least disper-

sive larval development (tailless, non-hatching) have the lowest speciation rates

and smallest geographical ranges. Our speciation rate results are contrary to

findings from sea urchins and snails examined in the fossil record, and further

work is necessary to reconcile these disparate results.
1. Introduction
Marine species have evolved modes of larval development that differ in

dispersal potential. Thorson asserted that the primary advantage of swimming

larvae for sessile or sedentary marine invertebrates is increased dispersal

capabilities [1]. However, an alternative hypothesis suggests that planktonic

larval development may have evolved in some lineages as an adaptation for

escaping from benthic predators [2]. Nevertheless, studies of sister species in

divergent metazoan phyla have shown that greater dispersal potential in feed-

ing larvae often positively correlates with higher rates of gene flow between

populations [3].

Studies explicitly examining the relationship between larval development

and geographical range in extant marine metazoan species have found a posi-

tive correlation between larval dispersal potential and geographical range [4,5].

Marine invertebrates species with higher dispersal potential positively correlate

with longer species durations and larger geographical ranges [6–9]. Fossil

snails and urchins with the derived non-planktonic or less dispersive larval

phase show higher speciation rates than planktonic species [6–10]. In fossil

studies, examining the evolution of larval development has often not been

done in a phylogenetic framework [6–8], which may overestimate trait effects.

Most of the 3000 described ascidians (Tunicata: Ascidiacea) develop as non-

feeding tadpole larvae that swim for a short period (hours to days), then settle

and metamorphose into sessile, filter-feeding adults [11]. The Styelidae and

Molgulidae show at least five independent origins of tailless larval develop-

ment [12]. Some tailless species develop indirectly by hatching from the

chorion before metamorphosis, and some hatch from the chorion only during

metamorphosis (see the electronic supplementary material, tables S1 and S2).
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Likelihood models have been developed recently for

examining how discrete characters influence diversification

rates inferred from incompletely sampled phylogenies

[13–15]. Using a phylogeny of 45 ascidian species in the

Molgulidae and Styelidae, and current distribution records

of these species to estimate geographical range sizes, we

find that species with less dispersive larval development

(tailless non-hatching species) have lower speciation rates

and smaller geographical ranges.
.org
BiolLett

9:20130068
2. Material and methods
Trees were generated from 1840 bp of 18S rDNA for 45

ingroup taxa of Styelidae and Molgulidae from Genbank and

from the phlebobranch outgroup, Ciona intestinalis. Sequences

were aligned using MAFFT v. 6 [16]. We used a GTR þ G þ I

substitution model selected using the Akaike Information Cri-

terion (AIC; [17]) in MRMODELTEST v. 2.3 [18]. Because ascidians

have a scanty fossil record [19], we used an uncorrelated,

relaxed-clock phylogenetic estimation in BEAST [20] for 100

million generations.

Data on tailed and tailless larval development, and hatching

and non-hatching tailless larvae (see the electronic supplemen-

tary material, tables S1 and S2) were used to examine how

these categorical traits influence speciation rates using a binary-

state speciation and extinction (BiSSE) and multi-state speciation

and extinction model (MuSSE) [13,14] in the R package diver-

sitree [15]. The BiSSE framework compared models where

diversification differed between tailed and tailless larval devel-

opment, hatching and non-hatching as well as the combination

of these characters in the MuSSE framework.

AIC [17] was used to test between different models on the

consensus tree in BEAST and 100 posterior trees. We compared

only speciation rates in the BiSSE and MuSSE analyses because

simulation studies have shown extinction rates are difficult to

estimate assuming a birth–death model of speciation, and extinc-

tion as in BiSSE and MuSSE [21]. The ‘skeletal trees’ incomplete

sampling method was used to account for the missing taxa in our

tree when estimating rates using BiSSE and MuSSE [14]. Extinc-

tion rates were set to be the same rates, given the potential for

mis-estimation and parameter correlation. However, it is possible

that if extinction rates were widely divergent between species

with different larvae, then our model would not be an adequate

description of the process, and our inferences may be misled.

While we acknowledge this possibility, given how notoriously

unreliable estimates of extinction rates are [21], and that estimates

derived from molecular phylogenies tend to be very low (often

close to 0), we do not think this is a likely scenario.

Geographical range sizes were estimated using current species

distribution records (see the electronic supplementary material for

more information). In brief, we estimated range sizes by removing

outlier points, then used a longest straight line distance (rhumb-

line) or ellipsoidal area. We then tested to see if either binary or

additively larval traits were a predictor of geographical range

size using Bayesian phylogenetic mixed models in the R package

MCMCglmm [22]. The posterior probability of different models

were estimated using a MCMC approach, running the chains for

10 million iterations with a one million iteration burn-in.
3. Results
All 100 trees show higher speciation rates in tailed species

compared with tailless species (figure 1a), and 99/100 trees

show higher speciation rates in hatching species compared

with non-hatching species (figure 1b).
We tested to see if a combination of our two sets of binary

larval traits (tailed and taillessness, hatching and non-hatch-

ing) is better for assessing speciation rates using a recently

developed test [15]. All 100 trees show a better AIC fit for a

model where speciation is estimated as a combination of

these binary traits (table 1). 94/100 trees and 100/100 trees

show higher speciation rate estimates in the interaction

model when compared with speciation rate estimates for

tailed and tailless alone, or for hatching and non-hatching

alone, respectively. 100/100 posterior trees show the highest

speciation rates in tailed hatching species when compared

with tailless hatching and tailless non-hatching species.

Tailless hatching species show higher speciation rates when

compared with tailless non-hatching species in 65/100

posterior trees.

Mean rhumbline range sizes for all tailed, hatching species

used in the study were 2425+ a standard error (s.e.) of

1201 km. Range sizes were 2164+ s.e. of 1038 km, and 201.4+
239.9 km for tailless, hatching, and tailless, non-hatching species,

respectively (see the electronic supplementary material). For

rhumbline range sizes (see the electronic supplementary

material, figure S2), we found species with hatching larval

development to have larger range sizes than species with non-

hatching larval development (b¼ 2.51+ s.e. 2.12; p¼ 0.0212).

We found similar results for total range sizes comparing species

with hatching and non-hatching larvae (b¼ 5.066+2.56;

p , 0.001). We found mean range sizes for species with

tailed hatching larval development to be the largest, mean

range sizes for species with tailless hatching larval development

to be intermediate and mean range sizes for species with

tailless non-hatching larval development to be the smallest

(b ¼ 4.80+3.41; p ¼ 0.0067). Results were consistent with ana-

lyses on ellipsoid ranges (see the electronic supplementary

material for more details).
4. Discussion
Our results demonstrate that species with tailed, hatching

larval development have higher speciation rates than ascidian

species with tailless hatching, and tailless non-hatching larval

development (figure 1), based on the available phylogeny

(figure 2). Data for 45 of an estimated 762 described species

in the Molgulidae and Styelidae were used, but we did use

an incomplete sampling method to take this missing data

into account [14]. Nevertheless, the small sample of species

could bias our results. We also have to be cautious that the

phylogeny used for this study may not be the true species

tree owing to the coalescent process [23]. However, most

clades are reflective of taxonomic and morphological relation-

ships [24], and are in agreement with a phylogeny we

inferred on a subset of taxa at 18S and 28S rRNA genes.

We accounted for low support for species relationships in

our phylogeny by comparing BiSSE and MuSSE analyses

across 100 posterior trees.

A simulation study examining the ability to detect

differences in rates of speciation, extinction and character

transitions found there to be a decrease in the ability to

detect the true simulated differences using BiSSE when phy-

logenies were moderately sized [25]. However, low power

should tend to reduce our ability to detect differences

between parameters, rather than exacerbate them. We have

found that when we simulate trees with a 2.5 times difference

http://rsbl.royalsocietypublishing.org/
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Figure 1. Speciation rates (in speciation events per substitution per site) for different larval character states using BiSSE and MuSSE. (a) Speciation rates from BiSSE
analyses of tailed and tailless species; (b) speciation rates from BiSSE analyses of hatching and non-hatching species; (c) MuSSE model for species with tailed
hatching, tailless hatching and tailless non-hatching larval development. The line below each speciation rate distribution is the 95% credible interval. Species
with tailed larvae have a tail and eyespot, tailless species that hatch have a dotted circle and tailless species that do not hatch have a solid circle.

Table 1. Model comparison using AIC for BiSSE and MuSSE analyses. The best-fit model from the BEAST consensus tree is in italic, and the numbers of 100
posterior trees that agree with the best-fit model from the consensus tree are given. Td, tailed; Tl, tailless; H, hatching; NH, non-hatching; SI, state independent;
SD, state dependent; q, transition.

BiSSE Td versus Tl BiSSE H versus NH MuSSE interaction
MuSSE Td 1 H versus Tl 1 H
versus Tl 1 NH

model AIC model AIC model AIC model AIC

SD 2212.08 SD 2223.82 SI 2174.58 SD 2183.72

SD-qTl-Td 2209.38 SD-qNH-H 2226.12 SD 2145.94 SD-q21 2186.84

SD-qH-NH 2225.58 interaction 2191.26 SD-q31 2188.30

SD-q32 2184.95

SD-q21, q31 2190.43

SD-q21, q32 2192.38

no. 100 trees

agree

80/100 no. 100 trees

agree

61/100 no. 100 trees

agree

100/100 no. 100 trees

agree

54/100
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in speciation rates between the ancestral and the derived

state, the power to detect different rates decreases in trees

of 23 species (77/100 trees). However, our tree size of 45 tips

is enough to detect similar results in large trees (95/100 trees

with 45 tips show higher speciation rates in the ancestral
character compared to 98/100 trees with 450 tips; see

electronic supplementary materials for more details).

We believe that tailed, hatching species cannot evolve

from a tailless ancestor because there is molecular evidence

to show that pseudogenes are formed in proteins critical for

http://rsbl.royalsocietypublishing.org/
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swimming in multiple tailless species [26]. It is still unclear,

however, why these derived modes of larval development

have evolved multiple times (figure 2). Species selection

may be acting to maintain tailed, hatching larval develop-

ment in molgulid and styelid ascidians; this argument was

made to explain higher diversification rates in plant spe-

cies with ancestral self-incompatibile reproduction than in

species with derived self-compatible reproduction [27].

Our results showing lower speciation rates in the derived

tailless and non-hatching species, which also have significantly

smaller geographical ranges, is contrary to the findings of

snails and urchins in the fossil record where derived species

with smaller geographical ranges have higher speciation rates

[6–9]. These contrary results may also be due to unforeseen

issues with comparing speciation rates estimated from fossil

data and molecular phylogenies. It is also possible that these

different results could be due to comparing speciation

rates for groups with alternative larval development that

are fundamentally different. The transition from feeding to

non-feeding larval development in fossil snails and sea

urchins may fundamentally affect dispersal and diversifica-

tion dynamics in different ways than do the loss of the tail

and hatching in ascidians.

While these transitions to a less dispersive larval mode

decrease range sizes in all of the groups compared, range

size may not predict speciation dynamics entirely. The

findings of lower speciation rates in derived tailless and

non-hatching styelid and molgulid ascidian species could

also be influenced by the population dynamics of these
species with alternative modes of larval development. Some

simulation studies support lower speciation rates in species

with ecological and geographically patchy distributions

[28,29]. Species with non-hatching tailless larval development

typically have patchy distributions and are found in very

specific locations. For example, Molgula pacifica is found in

high wave action ‘blow holes’ [30].

Stanley’s work on burrowing bivalves predicted a log-

normal relationship between mean population size and

speciation rate [31]. This curve would predict small population

sizes at very low speciation rates, and we suggest that this may

apply for tailless non-hatching molgulids [31]. This rationale

was used to describe species with small average population

sizes that are going through a higher rate of extinction than

speciation, so ‘many entire species are dying out, then few

small populations representing incipient species will be able

to blossom into full-fledged species’ [32]. While we are

unable to reliably estimate extinction rates using our methods

[21], more work will be needed to understand the population

dynamics of species with different modes of development in

ascidians and other marine invertebrates.

We thank the FHL reading group and Richard Strathmann for
thoughtful comments on the manuscript, and also thank Luke
Harmon and Rich FitzJohn for advice on the Diversitree analyses.
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the National Science Foundation under Cooperative Agreement no.
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