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Evolutionary biologists since Darwin have been fascinated by differences in the rate of trait-evolutionary change across lineages.

Despite this continued interest, we still lack methods for identifying shifts in evolutionary rates on the growing tree of life while

accommodating uncertainty in the evolutionary process. Here we introduce a Bayesian approach for identifying complex patterns

in the evolution of continuous traits. The method (auteur) uses reversible-jump Markov chain Monte Carlo sampling to more fully

characterize the complexity of trait evolution, considering models that range in complexity from those with a single global rate

to potentially ones in which each branch in the tree has its own independent rate. This newly introduced approach performs well

in recovering simulated rate shifts and simulated rates for datasets nearing the size typical for comparative phylogenetic study

(i.e., ≥64 tips). Analysis of two large empirical datasets of vertebrate body size reveal overwhelming support for multiple-rate

models of evolution, and we observe exceptionally high rates of body-size evolution in a group of emydid turtles relative to their

evolutionary background. auteur will facilitate identification of exceptional evolutionary dynamics, essential to the study of both

adaptive radiation and stasis.

KEY WORDS: Bayesian inference, Chelonia, comparative methods, primates,rate heterogeneity, reversible-jump MCMC, trait

evolution.

Explaining and identifying variation in rates of evolution among

lineages has long been a focus for evolutionary biologists (e.g.,

Darwin 1859; Simpson 1953; Gingerich 1983; Eldredge and Stan-

ley 1984; Estes and Arnold 2007). Simpson (1944, 1953) coined

a set of terms for the very purpose of distinguishing exceptional

rates of evolution in particular lineages (i.e., tachytely, bradtely,

horotely). Current approaches require that shifts in the evolution-

ary process are identified a priori (e.g., Butler and King 2004;

O’Meara et al. 2006; Revell and Collar 2009). What these and

related methods (Harmon et al. 2003; Freckleton and Jetz 2009)
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lack is the acknowledgment and accommodation of uncertainty in

the evolutionary processes that give rise to trait values observed

in extant taxa (but see Revell et al., in revision). The quality of

inference is bounded by the quality of the models that we apply in

the comparative framework: even the best among a set of inade-

quate models is still inadequate. Relaxing the assumption of static

points in the tree where rates have shifted should diminish bias

in branchwise estimates of evolutionary rates. Most ideal would

be methods that limit influence of a priori expectations, while

fairly comparing fit among the largest possible set of models and

allowing robust inference of rate variation.

Drawing on recent progress in modeling molecular evolu-

tion (e.g., Huelsenbeck et al. 2004; Pagel and Meade 2008;

Drummond and Suchard 2010), we model trait evolution by al-

lowing phylogenetically localized shifts in the rate of a random-

walk process of trait change. In a novel Bayesian approach, here

referred to as AUTEUR, we allow the data to directly inform uncer-

tainty in the estimated evolutionary process. AUTEUR (Accommo-

dating Uncertainty in Trait Evolution Using R) samples across a

broad set of possible trait evolution scenarios, considering mod-

els differing in number and topological position of local rate

shifts.

We model trait evolution as a Brownian-motion process,

which describes a broad set of neutral and nonneutral models

of phenotypic evolution (Felsenstein 1973), and may be a reason-

ably adequate approximation of the evolutionary process in some

lineages (Harmon et al. 2010). Under the modeled random-walk

process, the trajectory of trait evolution (magnitude and direction-

ality) is independent of the current state of the character. Whereas

the expected value at the end of a random walk is simply the start-

ing value, variance in traits accumulates in proportion to both the

extent of independent evolution in lineages and the evolutionary

rate of the character (see Felsenstein 1973; O’Meara et al. 2006;

Revell et al. 2008). We thus expect little trait variance between

sister species who have just diverged, especially for a slowly

evolving trait. Its mathematical tractability makes Brownian mo-

tion an ideal framework in which to develop the model-fitting

approach described here.

AUTEUR applies a Bayesian approach to modeling rate het-

erogeneity on a phylogenetic tree using reversible-jump Markov

Chain Monte Carlo (Metropolis et al. 1953; Hastings 1970). This

reversible-jump approach is implemented to assess fit of models

of differing complexity, which in this context is the number of rate

shifts in the tree (Green 1995; Huelsenbeck et al. 2004; Drum-

mond and Suchard 2010). We construct a Markov chain such that,

upon convergence, distinct Brownian-motion models are sampled

according to their posterior probability (Bartolucci et al. 2006).

Of main interest, and inherently tied to the set of sampled models,

are the marginalized distributions of relative rates for each branch

in the tree.

General Approach: Bayesian
Sampling of a Multirate
Brownian-Motion Process
AUTEUR takes as input a phylogenetic tree and character states

for sampled species. Trait data are assumed to have evolved by

Brownian motion, and evolutionary rates are presumed to be phy-

logenetically heritable. That is, the ancestral value for the evolu-

tionary rate of the trait is inherited in each descendant unless the

data provide evidence for a rate shift (see below). AUTEUR allows

exploration from the simplest Brownian-motion process (a global

evolutionary rate) to a highly complex model where each branch

evolves at a rate independent from all others (i.e., the “free model”

of Mooers et al. 1999).

In the following paragraphs, we detail the mechanics of

our Bayesian approach. Consider an ultrametric phylogenetic

tree with N species. Excluding the stem, this tree will have

2(N − 1) branch lengths, which we will refer to as �b =
[b1, b2, . . . , b2(N−1)], listed in some arbitrary order. We will

call the vector of tip phenotypes �y = [y1, y2, . . . , yN ]. Under

a Brownian-motion model, these tip phenotypes come from a

multivariate normal distribution (Felsenstein 1973). In the case

where rates across every branch in the phylogeny are equal, this

distribution will have mean α and variance–covariance matrix

S = [si j ] = σ2[ci j ], where α is the state at the root of the tree and

σ2 is the rate parameter for the Brownian-motion process. Each

cij is the shared phylogenetic path length for species i and j. We

note that each sij (i.e., an element within the variance-covariance

matrix) can be written as the rate-scaled shared path length for

species i and j. Thus, si j = ∑2(N−1)
k=1 σ2akbk , where ak = 1 if

branch k is shared by both i and j in the path from the root to each

species and 0 otherwise; bk is simply the length of the kth branch

as indicated above.

We will consider a set of models where characters evolve un-

der a Brownian-motion model, but the rate of evolution might vary

on each branch of the tree. As this model is highly dimensional,

with 2(N − 1) − N = N − 2 more parameters than trait val-

ues, we use reversible-jump Markov chain Monte Carlo sampling

for efficient searching of this space, and our prior is constructed

so to favor models with few distinct rate classes. We will spec-

ify branch-specific relative rates as �σ2 = [σ2
1, σ

2
2, . . . , σ

2
2(N−1)], or-

dered as the vector of branch lengths, �b. In this case, characters will

still follow a multivariate normal distribution, but the elements of

the variance–covariance matrix, S, will be si j = ∑2(N−1)
k=1 σ2

kakbk ,

using each branch-specific σ2
k to scale the path lengths. The set of

evolutionary rates scalars, �σ2, thus bears on the stochastic variance

of trait values expected to accumulate within the tree.

Standard proposal mechanisms, described elsewhere (see,

e.g., Green 1995), are used to update parameters in the model. We

use multiplier and sliding-window proposals to update the vector
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of relative rates; sliding-window proposals are used to update the

root state. A critical proposal mechanism in our reversible-jump

Markov chain is the splitting or merging of relative rates across

the tree (see also Huelsenbeck et al. 2004). Steps in the chain that

involve this “split-or-merge” operation randomly choose a single

branch. If the relative rate of that branch is currently equivalent

to the relative rate of its immediate ancestor, a new local rate is

proposed for the descendant branches of the selected branch. This

new rate cascades through the descendants of that branch until

descendant tips are reached or other local rates, different from the

new rate, are encountered. Merge operations perform the reverse:

if in the current state of the Markov chain the immediate ancestral

relative rate differs from that of the randomly chosen branch, these

rates may be combined into one by the merge move. Both merge

and split operations are conducted such that the mean of relative

rates is preserved (Green 1995; Huelsenbeck et al. 2004).

The Markov chain is a succession of outcomes of model

comparisons, where the adoption of a particular model in each

state of the chain is driven by the posterior odds of that model

in light of the observed data. A newly proposed model, θ′, is

formulated for each state by updating some facet of the current

state (e.g., number of shifts, or values for relative rates), which is

compared to the current state of the chain, θ(t). In broadest terms,

the acceptance probability of the newly proposed state given the

current state is,

θ(t+1) =

⎧⎪⎨
⎪⎩

θ′ with probability: min

{
1,

P(θ′ | �y)

P(θ(t) | �y)

Q(θ(t) | θ′)
Q(θ′ | θ(t))

}
,

θ(t) otherwise.
(1)

Proposed models are thus adopted in inverse proportion to

the poorness of the model fit. This not only ensures that proposed

models with higher posterior odds will always be accepted, but

also enables the chain to adequately explore model space with-

out being confined to local optima of posterior support. The first

term of the acceptance probability involves the ratio of posterior

densities of the proposed and current states; the second term de-

scribes the transition kernel between adjacent states of the chain.

Beginning with the first term of the acceptance probability from

above,

P(θ′ | �y)

P(θ(t) | �y)
= P(θ′)

P(θ(t))
· P(�y | θ′)

P(�y | θ(t))
. (2)

This term comprises the ratio of prior odds, P(θ′)
P(θ(t)) multiplied by

the likelihood ratio. An important factor in Bayesian analysis is

the set of priors used in model comparisons. We describe details

of formulating the ratio of prior probabilities in the section to

follow.

The second term of the acceptance probability involves the

Hastings ratio, which is the ratio of probabilities of traversing

either direction between proposed and current states. If state-

traversal asymmetries exist in the proposal kernel, we thus need

to correct for the potential of biased sampling of the chain

(Hastings 1970). For instance, if in the current state of the chain

a single rate governs evolution across the tree, only proposals

that split the global rate into two independent rates are permis-

sible. This constraint would serve to bias the transition probabil-

ity toward higher dimension models. Analogously, if the current

state involves a unique rate for each branch in the tree, no fur-

ther rate shifts would be possible. We implement Green’s (1995)

method for calculating the correction factor (i.e., Hastings ratio),

which is

Q(θ(t) | θ′)
Q(θ′ | θ(t))

= Q(K | K ′)
Q(K ′ | K )

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K + 1

2n − 2 − K
if K ′ = K + 1,

2n − 2 − K + 1

K
if K ′ = K − 1,

1 if K ′ = K .

(3)

As shown, the proposal kernel is rewritten in terms of the number

of parameters in the models, K and K′, which describe dimension-

ality, or number of relative-rate shifts, in each model. Where com-

pared models do not differ in number of parameters and where

transitions between current and proposed states are symmetric,

the Hastings ratio reduces to one and does not contribute to the

posterior odds of the proposed model.

PROPOSALS AND PRIORS

Using the sliding-window proposal mechanism, proposal den-

sities for σ2
k and on the state at the root, y0, are symmetric

between current and proposed values. Proposed values that ex-

ceed bounds (e.g., a negative relative-rate parameter) are simply

reflected back into the allowable range. The proposal kernels

are: σ2′
k ∼ σ2

k + U (−ν, ν) and y′
0 ∼ y0 + U( − ν, ν), where ν

is a proposal width and U is a uniform distribution. Priors on

these parameters are uninformative and span the following ranges:

σ2
k ∼ U[0, ∞) and y0 ∼ U( − ∞, ∞) (see Schluter et al. 1997).

A multiplier proposal mechanism is also used to update σ2
k and

may be asymmetric; this asymmetry is accommodated by the

Hastings ratio. The multiplier proposal draws new rates from

σ2′
k ∼ σ2

k · expλ(u−0.5) , where u ∼ U(0, 1) and where λ = 2log (δ)

and δ is either the proposal width from above (if ν ≥ 1) or its re-

ciprocal (if ν < 1). The Hastings ratio for this multiplier proposal

is simply u.

We place high prior weight on few shifts in the evolutionary

process. Using uninformative priors for the other parameters, we

only need to consider the ratio of prior probabilities of having

K and K′ rate shifts in the phylogeny, computed using a Poisson

distribution that is truncated beyond the maximum number of rate
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shifts for a given tree (Kmax = 2n − 2; Drummond and Suchard

2010). For chain states that have at least one rate shift in the tree,

we introduce a proposal mechanism that locally moves the shift

one branch, with equiprobable chances of the shift moving tip-

ward or rootward. Because in a binary tree, there are always two

descendants at each node, this proposal is as well asymmetric: our

proposal mechanism disfavors moving toward the more tipward

branch. When used, we account for the asymmetric probabili-

ties of moving to and from a particular branch by the Hastings

ratio.

PROPOSAL-WIDTH CALIBRATION

To achieve reasonable rates of mixing when Markov chain sam-

pling occurs, an initial sampling period is used to calibrate the

proposal width (ν from above). An initial geometric progression

of widths (from 1
8 , 1

4 , . . . , 8) is used in these calibrations. Using

the maximum-likelihood estimate for a global-rate model as a

starting point, we compute a weighted average of proposal widths

to initiate sampling where weights are based on acceptance rates

for 1000 proposals under each proposal width. Thereafter, one-

tenth of the total run length is used to adjust the initially chosen

proposal width in the geometric progression. Updates to the pro-

posal width occur at progressively longer intervals in the recali-

bration period (e.g., at generation 101, 102..., 105 for a total run

length of 106 generations). For each recalibration, 1000 proposals

are again considered for a pair of adjusted proposal widths, which

are one-half and twice the current proposal width. As previously,

proposal width is readjusted using acceptance rates as weights

for sampling conducted with the pair of newly proposed widths.

When Markov chain sampling begins, the proposal width is con-

strained to the calibrated value, and samples from the calibration

period are obligatorily excluded from our estimate of the posterior

distribution of models.

Methods
EVALUATING STATISTICAL PROPERTIES BY SIMULATION

We use two general classes of simulations to investigate the prop-

erties of this method: under a global rate and under a heteroge-

neous process of evolution in which a single shift in relative rate

occurs. Within each class of simulation, we assess efficiency of

the method by comparing true to estimated parameters under a

range of tree sizes (16, 32, 64, and 128 taxa); second, we mea-

sure sensitivity by using a range of evolutionary rates across trees

(8-, 16-, 32-, and 64-fold reductions of a unit rate). Trees were

generated by the TREESIM package (version 1.3, Stadler 2010)

under a pure-birth model of diversification and with a stochastic

speciation rate of one new lineage per time unit. For multiple-

rate simulations, we confined tree space to those trees that bore

at least one clade with half the number of total tips in the tree

(i.e., clades with 8, 16, 32, or 64 tips). We positioned the single

rate shift to occur at the base of a selected subclade of appropri-

ate size: the ancestral rate (σ2
A) was 1.0 and the rate descending

from the shifted node drew from one of four factor reductions

of this ancestral rate: σ2
S ∈ (

1
8 , 1

16 , 1
32 , 1

64

)
. The sequence of tree

sizes and this latter set of reduced rates were used for simulations

conducted under a constant and global rate. Code from GEIGER

(version 1.0, Harmon et al. 2008) was used to simulate trait data

for all simulations. For simulations investigating the effect of

clade size, a shifted rate (σ2
S) of 1

16 was used. We used a tree size

of 64 species for simulations assessing the influence of magnitude

of rate differences. Chain sampling in our simulations occurred

over 106 generations, of which the first half was discarded as a

burn-in.

We use several measures to evaluate performance and statis-

tical properties of the method, for both global-rate and multiple

rate simulations. We summarize simulations by evaluating poste-

rior probabilities of the true complexity of the generating model

as well as the posterior probability of a model at least as com-

plex as the simulated process. We consider error in estimated

relative rates in a branchwise fashion, where we weight the pro-

portion of the estimated rate to the true rate by the length of each

branch. The average of these weighted branchwise proportions is

used as a summary of error across the entire tree. For instance,

if each relative rate, σ2
k , is twice the true rate at each correspond-

ing branch, the tree-wide summary of the proportion of the true

rate would also be two. For simulations involving a shift in evo-

lutionary rate, we further assess rate-shift error by determining

the inferred posterior probability of a shift occurring at the truly

rate-shifted branch. Retaining every hundredth sample from the

Markov chain, we use a thinned posterior sample in evaluating

each measure of performance.

EMPIRICAL EXAMPLES

We investigate support for a heterogenous process in evolution

for a set of reasonably large datasets: body size for turtles (see

Jaffe et al. 2011; 226 species) and female body mass for primates

(see Redding et al. 2010; complete sampling of 233 species).

We use log-transformed measures of body size for each dataset.

Straight-line carapace lengths in Chelonia span well over an or-

der of magnitude. If we linearize by the cube root, raw body

masses for extant primates similarly range just over a single order

of magnitude: from the mouse lemur (Microcebus rufus) to the

gorilla (Gorilla gorilla). We ask whether this trait variance is as-

cribable to a rate-homogenous process or if observed variation is

attributable to lineage-localized shifts in the evolutionary process.

For each analysis, we combine results from three independent

Markov chains, discarding the first quarter of 106 generations of

sampling as burn-in.

EVOLUTION DECEMBER 2011 3 5 8 1



JONATHAN M. EASTMAN ET AL.

Results
Over the range of examined simulations, our introduced Bayesian

sampler reliably and efficiently estimates the generating process

of trait evolution. Simulation results suggest that despite some im-

precision in identifying branch-specific locations of rate shifts in

our smallest trees, marginalized rate estimates at branches are very

reasonable across the range of datasets used herein. Our empiri-

cal datasets appear to confirm this result: while it may be seldom

that a particular node will receive substantial posterior support for

a rate shift, phylogenetically local patterns in rate heterogeneity

may be readily distinguishable if the marginal posterior densities

of rate estimates are used for purposes of rates comparison.

The range of overall acceptance rates within simulations

exhibited little variance between the two classes of simulations

(global-rate simulations: [0.38, 0.49]; multiple-shift simulations:

[0.32, 0.53]). Split-or-merge operations exhibited the weakest

rates of acceptance (from 0.01 to 0.04), which is often charac-

teristic of reversible-jump Markov chains (see Green and Hastie

2009). Yet for a dataset that exhibits strong signal for models of a

particular complexity, we should expect very few split-or-merge

operations to be accepted upon convergence of the chain. Includ-

ing calibration periods for the proposal width, three independent

chains for each empirical dataset were completed in ca. 11.5 h on

a machine with dual quad-core 2.4 GHz Xeon processors with 8

GB RAM running OS 10.6.7.

GLOBAL RATE SIMULATIONS

Simulations under a global rate for trees differing in the num-

ber of species suggest that AUTEUR performs well in recovering

the generating model complexity (on average, PP ≥ 0.6), with a

modest increase in posterior probability with increasing tree size

(Fig. 1A). Posterior weight for the generating, global-rate model

slightly exceeded prior weight of ca. 0.5, yet inferred model com-

plexity was generally overparameterized (Fig. 1A,C). Regardless

of tree size, rate estimates across the tree did not appear to deviate

substantially from the generating rates of evolution (Fig. 1B). For

all global-rate simulations, tree-wide summaries of rate estimates

fell well within the band between one-half and twice the true rate

(Fig. 1B,D), and variance of these estimates appeared to decrease

with increasing tree size (Fig. 1B). Under these simulations, any

deviation of rate estimates from the true rates would be indicated

where the tree-wide proportion of the true rate lies on either side

of one. Recall that this statistic accommodates branch length, such

that longer branches whose relative rates are estimated with high

error contribute greater weight in the calculation of our tree-wide

measure of error (see Methods).

As we should expect, the magnitude of the constant rate

of evolution appeared to exert little influence on the ability to

recover either the true model complexity or true relative rates in

these global rate simulations (Fig. 1C,D). Even where posterior

models were overly complex, relative rate estimates were very

near the true values and appear unbiased (Fig. 1B,D).

MULTIPLE RATE SIMULATIONS

Posterior densities of relative rates at branches appear to be rea-

sonably well estimated despite relatively low performance in de-

tecting specific branches that experienced a rate shift in simula-

tion. Yet, the largest trees in our simulations (≥64 tips) achieved

very high posterior probabilities in recovering adequate model

complexity (Fig. 2A,D), precision in topological identification of

the simulated rate shift (Fig. 2B,E), and overall estimate accuracy

of the underlying evolutionary rates (Fig. 2C,F). Marked improve-

ment in regard to identification of the rate-shifted branch is ob-

served between simulations conducted with 32 versus 64 species,

where the latter simulations exhibited little variance around com-

plete posterior support for a shift occurring at the truly shifted

branch (Fig. 2B). A similar improvement in recovering position

of the truly shifted branch is evident between simulations in-

volving eightfold and 16-fold reductions of the ancestral rates

(Fig. 2E). Even where the posterior sample of model complexity

was underparameterized, rate estimates at branches were gener-

ally quite reasonable (e.g., compare panels from Fig. 2A with

2C). Substantial improvement in the accuracy of rate estimates is

apparent with increasing tree size (Fig. 2C).

For the smallest of trees in our simulations, we were un-

likely to recover proper model complexity (Fig. 2A), and elevated

variance in rate estimates is likely a result of this underparame-

terization (Fig. 2C). Accuracy of rate estimates appears strongly

related to ability in recovering adequate model complexity where

at least some branches are allowed independent relative rates

(Fig. 2A,C).

Disparities between the ancestral and shifted rates (hereafter,

“effect sizes”) appear strongly related to method performance. For

eightfold or larger reductions in the ancestral rate at the simulated

rate shift, the primary mass of posterior density for model com-

plexity was strongly centered on multiple-rate models (Fig. 2D).

Precision in inferred placement of the rate shift improved with

increasingly large effect size, and an eightfold rate difference

may lie at the threshold of sensitivity for this method with 64

taxa (Fig. 2E). Noting that the potential for rate-estimate error

increases along the abscissa in Fig. 2F, we find branchwise rate

estimates to exhibit little error and bias: all effect-size simulation-

replicates fall well within a band of error ranging between one-half

and twice the true relative rates (Fig. 2F).

EMPIRICAL EXAMPLES

Posterior odds overwhelmingly support multiple-rate models of

body-size evolution in both turtles and primates. As shown by

Bartolucci et al. (2006), posterior odds of one model against
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Figure 1. Panels summarize method performance for global-rate simulations in relationship to clade size (“clade size”; leftmost panels)

and evolutionary rate (“global rate”; rightmost panels). All simulations were conducted with a global rate: for “clade size” simulations,

evolutionary rate (σ2) was 1
16 , and tree size is indicated along the abscissa; for “global rate” simulations, σ2 was drawn from ( 1

8 , 1
16 ,

1
32 , 1

64 ) and trees each had 64 tips. Throughout, the large shaded circles correspond to medians of eight simulation replicates. Ability of

auteur to recover the generating model used in simulation is plotted as a function of tree size (A) and evolutionary rate (C). Values in (A)

and (C) are posterior probabilities, PP, of a global-rate model. Tree-wide error in rate estimates are shown in relationship to tree size (B)

and evolutionary rate (D). In (B) and (D), the axis of ordinates spans a range of error, from average branchwise proportions from 1
5 the

true rate to a fivefold average difference between estimates and true rates. Points represent averaged proportions of the true relative

rate across all branches in the tree (see Methods). We consider error on a semi-log plot inasmuch as estimates of rates that are half or

double the true value are equally (un)reasonable. The expectation for the method, if rates are estimated without error, is a proportion

of the true rate of one (indicated by dot-dashed line).

another can be efficiently estimated from reversible-jump Markov

chains by computing the ratio of frequencies in the chain sam-

pling M1 versus M2, where each M represents a model of par-

ticular complexity (e.g., a global-rate model of trait evolution).

Not a single sample from the posterior density of model com-

plexities had fewer than two rate parameters, rendering Bayes

factor comparisons impossible from our Markov samples for

these taxa. To evaluate convergence of the Markov chains, we

used several diagnostics from the CODA package (version 0.14-2,

Plummer et al. 2010). Effective sample sizes of the relative rate

EVOLUTION DECEMBER 2011 3 5 8 3
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Figure 2. Panels summarize method performance for multiple-rate simulations in relationship to clade size (“clade size”; leftmost panels)

and disparity between ancestral and shifted evolutionary rates (“effect size”; rightmost panels). All simulations were conducted in which

a shifted rate (σ2
S) differed from that at the root of the tree (σ2

A = 1) and where the shifted rate affected one-half of all branches in the

phylogeny. For “clade size” simulations, evolutionary rate at the shifted branch (σ2
S) and descendants thereof was 1

16 , and tree size is

indicated along the abscissa; for “effect size” simulations, σ2
S was drawn from ( 1

8 , 1
16 , 1

32 , 1
64 ), and trees each had 64 tips. Shown is the

ability of our method to recover adequate model complexity under a rate-shift scenario, as related to tree size (A) and factor difference

between σ2
A and σ2

S (D). Median PP for two-rate models were 0.49, 0.58, 0.73, and 0.77 with increasing clade size; similarly, for increasing

effect size, median posterior probabilities (PP) of two-rate models were 0.69, 0.77, 0.71, and 0.72. Power to precisely recover the branch

at which the simulated shift occurred is shown as a function of tree size (B) and effect size (E). Plotted posterior probabilities in (B) and (E)

are conditioned on there being at least one rate shift in the evolutionary model. Shown is the relationship between branchwise accuracy

of relative-rate estimates in relation to tree size (C) and effect size (F). See Figure 1 for further detail.
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parameters were generally well in excess of 103, and samples

from the thinned chains exhibited little autocorrelation. Model

likelihoods appeared to reach stationarity within several thousand

generations of sampling postcalibration.

Moderate support for several rate shifts is apparent within

Graptemys (Emydidae) and Geochelone (Testudinidae; 0.42 <

PP < 0.60; Fig. 3). A pair of shifts receives similar support

for two geoemydid turtles of likely intergeneric hybrid origin,

Mauremys iversoni and Ocadia philippeni (0.40 < PP < 0.56;

Fig. 3). We focus model-averaged rate comparisons within the

three polytypic families of the Testudinoidea: Emydidae, Geoe-

mydidae, and Testudinidae (Rhodin et al. 2010). Although rates

of body-size evolution within the tortoises (Testudinidae) appear

to be in excess of those of the Geoemydidae (P = 0.013), emydid

body sizes appear to evolve at truly exceptional rates (Fig. 3).

Rates for the Emydidae are distinguishable from both the phy-

logenetic background (P = 0.014; Fig. 3) as well as from their

sister group, comprising the Testudinidae and the Geoemydidae

(P = 0.042).

Although inferred evolutionary rates in the New World mon-

keys (Platyrrhini) were below the estimated median rate for

primates, we find no evidence to conclude that rates of body-

size evolution within this group are distinct from other primates

(P = 0.42). In fact, we find insufficient evidence for exceptional

evolution in any of the primary groups within the Primates us-

ing model-averaged rate comparisons (0.21 < P < 0.78). These

results are reinforced by the lack of posterior support for branch-

associated shifts in rate. Within primates, a pair of downturns in

evolutionary rate are weakly supported for the Simiiformes and

Platyrrhini (0.20 < PP < 0.45), and an upturn within macaques

(Macaca) and in the lineage leading to the pygmy marmoset (Cal-

lithrix pygmaea) receive similar weak support (0.32 < PP < 0.33;

Fig. 3).

Discussion
In general, the Bayesian sampler of evolutionary rates presented

here provides accurate posterior samples of the modes and tempo

of trait evolution across phylogenetic trees. Although the method

appears susceptible to over-fitting of model complexity (Figs. 1

and 2), relative rates that are marginalized across model com-

plexity are estimated with very little error (Fig. 2C). Inasmuch

as true evolutionary processes may be quite discrepant from the

saltational shifts in rates modeled here, we advocate an emphasis

on model-averaged branchwise estimates of relative rates rather

than positions of inferred shifts. Such a focus should be more

resistant to ad hoc interpretations of the posterior results. This

model-averaging framework still allows comparisons of evolu-

tionary hypotheses at specific points or intervals on the tree, yet

provides a more accurate representation of the evidence for rate

shifts along nonfocal branches. We focus our discussion on per-

formance and potential extensions of this method.

CONSIDERATIONS

Although we model the evolutionary process as inherently

saltational—rates change discretely between branching events—

we expect that this method may as well be capable of capturing

more gradualistic change in rate. Support for shifted rates that is

diffusely spread over the backbone of a subtree (e.g., Fig. 3) may

be suggestive of a more gradual process of change that must nec-

essarily be discretized by the method introduced here. The lack

of overwhelming posterior support for a rate shift concentrated at

a particular branch may not imply that evolutionary rates within

the lineage are not atypical. The exceptional rates of body-size

evolution in the Emydidae appear to provide an example of just

this sort, where the posterior mass of support for rate shifts is

quite diffuse (Fig. 3). The converse also appears to hold: strong

posterior support for a shift at a given branch may not provide

sufficient evidence for distinguishable rates, but rather should be

formally tested (e.g., see Fig. 3 caption).

Model-averaged rates from the posterior summary of the

reversible-jump sampler provide a natural foundation for hypoth-

esis testing. The evolutionary rate within a lineage in comparison

to the phylogenetic background is one such testable hypothesis

(e.g., Fig. 3), although similar tests could be quite varied and

need not involve comparisons between monophyletic or para-

phyletic groups. Even where there is weak support for a rate shift

at any particular branch, model-averaged rates may provide suf-

ficient signal in detecting localized and distinguishable patterns

of incongruous evolution in distinct areas of tree. As shown here

(Fig. 3), heterogeneity in the process of evolution may well be

correlated with phylogeny (see also O’Meara et al. 2006) but also

with traits extrinsic to those whose rates are being modeled (e.g.,

selective regimes, as in Butler and King 2004). Correlating pos-

terior rate estimates with the states of extrinsic characters would

require trustworthy estimates of states at each branch in the phy-

logeny (e.g., ecological niches, biogeographical regions, etc.), an

issue that requires careful consideration (e.g., Goldberg and Igic

2007; Li et al. 2008; Ekman et al. 2008).

To facilitate comparisons among models differing in com-

plexity, we allow for Bayes factor comparisons in the provided

software (Jeffreys 1935; Kass and Raftery 1995). Within a single

chain (or from pooled chains), the Bayes factor provides a poste-

rior measure of model support while integrating over uncertainty

in the precise placement of rate shifts in the tree, if the model

so allows. We further allow sampling to be parametrically con-

strained (e.g., considering only k-rate models, rather than the full

range of model complexities) for alternative statistical compar-

isons between models with differing complexities. For instance,

sampling can be constrained to maximal model complexity to
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Figure 3. Posterior comparisons of rate of body-size evolution in turtles using model-averaging of rate estimates. Shown are posterior

densities of rates comparing (A) those between the Emydidae (red; Em) and the phylogenetic background (gray); and (B) rates between

the Geoemydidae (gray; Ge) and the Testudinidae (red; Te). Bars represent the highest posterior density (0.95) of rate estimates for each

group. Rates are computed as a weighted average of posterior rate estimates, where weighting is determined by branch length (see

Methods); note that rate densities are plotted on a log-scale. To test whether rates were distinguishable between lineages, we conducted

104 Monte Carlo sampling iterations, each of which was a comparison between randomly sampled draws from the posterior distributions

of lineage-specific relative rates. Expecting the sign of these comparisons to be random if the two posterior distributions were truly

identical, we interpret the proportion of comparisons in a particular direction to be an approximate probability value in a one-tailed test.

We report two-tailed probability values under this resampling procedure, given that we proposed no prior expectation for the sign of

these differences. Comparisons in panels (A) and (B) both strongly indicate rate differences (P = 0.014 and P = 0.013, respectively). The

depicted turtle phylogeny (C) is from Jaffe et al. (2011). Hue and size of circles at branches denote posterior support for a rate shift at

the indicated branch. Larger and redder circles suggest higher posterior support for an upturn in evolutionary rate (see text for details).

Branches in the phylogeny are colored such that rates not deviant from the median are shaded gray; rates below (or above) the median

are shaded blue (or red). Rates corresponding to each hue are indicated in the legend.

examine posterior support for the “free model” (sensu Mooers

et al. 1999), where each branch evolves at a unique rate. Al-

though AUTEUR may be capable of sampling from the ’free model’

in unconstrained analyses, it is likely that few datasets will ap-

proach the number of rate categories as there are branches in the

tree.

We note a potential difficulty in distinguishing a heteroge-

neous process of evolution where a shift occurs on a rootmost

branch. If we were to simulate a downturn in evolutionary rate

at the base of the tree (on a particular branch), we might ex-

pect posterior support for rate shifts to be spread between this

and its sister branch (i.e., with some posterior weight supporting

an upturn on the sister branch and some posterior support for

a downturn on the opposite branch). In simulations conducted

on trees perfectly balanced at the rootmost split, we find this to

be the case: posterior support for rate shifts tends to be spread

3 5 8 6 EVOLUTION DECEMBER 2011
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Figure 4. Marginalized rate estimates of body-mass evolution in primates and posterior support for a multiple-rate model by comparison

of prior and posterior odds of varying model complexities. Three primary clades within the Primates are indicated at top (Catarrhini:

Old World monkeys and apes; Platyrrhini: New World monkeys; and Strepsirrhini: lemurs and allies). Although multiple-rate models are

clearly favored (inset), permutation tests did not indicate strong support for disparate rates of evolution between these major lineages.

The primate tree used here is from FitzJohn (2010), which is based primarily on work by Vos and Mooers (2006). See Figure 3 for further

detail on symbols and shading.

between each of the first descendant branches of the root (data

not shown). In excluding the root branch from the constructed

evolutionary models, the ability to resolve the nature of a shift

at the rootmost branches will be limited. We note, however, that

relative rates in these balanced-tree simulations do tend to accu-

rately reflect the underlying known rates, which reemphasizes the

importance of using marginal distributions of branch-specific rate

estimates.

Some of the poorest estimates from this method occur where

data were few (Figs. 1B and 2C). Under multiple-rate trait evo-

lution, relative rates across the tree may be estimated with high

variance as a result of the inability to recover proper model com-

plexity; in simulation, this was most apparent for our smallest

datasets (i.e., 16 and 32 taxa; Fig. 2C). If error is due to un-

derparameterization of model complexity, we expect that as the

difference between σ2
S and σ2

A becomes small (thereby converg-

ing toward a single rate), error in rate estimates will approach

zero (as is the case where the difference between σ2
S and σ2

A is

large and thus detectable; Fig. 2C,F). There may, however, be a

range of disparities between σ2
S and σ2

A within which a true rate

difference may be difficult to confirm and rate-estimate error may

accumulate in the tree.

EXTENSIONS

To improve mixing in the Bayesian sampler, we note the potential

benefit of Metropolis coupling of chains (e.g., Huelsenbeck and

Ronquist 2001). We have observed that chains may occasionally

become resistant to slight model perturbation in the topological

position of a rate shift, especially where a set of branches provides

strong signal for an exceptional rate. This can be problematic if

the chain becomes trapped by sampling models with suboptimal

placement of a rate shift. We suspect Metropolis coupling of hot

and cold chains will enable more precise estimation of the topo-

logical locations of rate shifts. At the very least, we stress the

importance of combining posterior estimates from multiple inde-

pendent chains, which we facilitate with the provided software.

Phylogenetic error, especially where error is nonrandom with re-

spect to the true phylogeny, is certain to contribute to erroneous

results in AUTEUR (e.g., see Martins and Hansen 1997 and Revell

et al. 2005). In fact, results that weakly support shifted rates for

two putative intergeneric hybrids (see Fig. 3 and Results) may

be attributable to violation of the assumption of a nonreticulating

phylogeny. A difficult scenario, distinct from hybridization, could

be where the estimated phylogeny does not contain the bipartition

whose stem has truly experienced a shift toward an exceptional
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rate of trait diversification. A reasonable approach in dealing with

phylogenetic error might be to integrate inferences from AUTEUR

over a sample of credible trees. Sensitivity of results to phylo-

genetic error could otherwise be investigated by simulation. We

further note that measurement error can be readily incorporated

into these analyses where the extent of error associated with each

trait value is known (Martins and Hansen 1997; Ives et al. 2007;

Harmon et al. 2010).

An extension of the Revell and Collar (2009) likelihood

method of testing evolutionary shifts in correlated evolution of a

pair of characters could be readily implemented in the reversible-

jump Bayesian framework. These authors ask whether the evo-

lution of two functional–morphological characters in centrarchid

fish is correlated, and if so, whether the relationship is uniform

across evolutionary history. Rather than (or in addition to) fit-

ting models where the rates of evolution of quantitative char-

acters changes at particular nodes in the tree, the evolutionary

matrix among characters would be the parameter of interest in

a reversible-jump approach. In the most highly complex model,

each branch in the phylogeny would have an independent evolu-

tionary matrix among characters. Reversible-jump Markov sam-

pling would provide a natural framework in which to simultane-

ously fit a broad range of character-correlation models and without

the limitation of needing to select the most appropriate model(s)

for comparison a priori.

The reversible-jump approach of AUTEUR is sufficiently flex-

ible as to allow for broader extensions into other commonly im-

plemented models of trait evolution and for which model likeli-

hoods are calculable (e.g., Ornstein–Uhlenbeck process, Hansen

1997; Early-burst evolution, Blomberg et al. 2003). We expect

development toward an implementation of AUTEUR under a gener-

alized Ornstein–Uhlenbeck model of constrained trait evolution.

In such a model, trait values are largely bounded to optima such

that values strongly deviant from the optimum are expected to

be drawn to fitted medial values (Hansen 1997; Butler and King

2004). Rather than comparing fit of potentially numerous a pri-

ori models with distinct histories of transitions between selective

regimes, one could foresee the utility in a reversible-jump sam-

pler of which one purpose is to “identify” these shifts between

selective regimes.

Conclusions
The Bayesian sampler of phenotypic rates, presented here and

provided as an R software package (AUTEUR), greatly broadens

the field of possibilities in modeling continuous-trait evolution

and identifying exceptional rates of change in lineages. AUTEUR

can be used as a framework in which to test existing hypotheses

for rate heterogeneity or as a method for generating hypotheses of

rate variation. We emphasize the use of model-averaged rates in

posterior analyses, as estimate error across a wide range of simula-

tion conditions appears reasonably small. We find that the ability

to recover model complexity is highly related to the disparity in

rates across the tree and dataset size. Thus, where the potential

for large absolute error in rate estimates is most menacing, this

method appears consistently reliable.
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