Other Models for
Continuous Characters




Other Models for
Phenotypic Evolution

® Brownian Motion (BM)
® Early Burst (EB)
® Ornstein-Uhlenbeck (OU)



Brownian Motion (BM)

® Brownian motion model with a constant
rate of evolution

® Two parameters: starting value (O) and rate
(07)



Ornstein-Uhlenbeck
(OU)

dXm = a[O - Xp]at + odB)



Ornstein-Uhlenbeck
(OU)

dXm = a[O - Xp]at + cdB)



Ornstein-Uhlenbeck
(OU)

aX ) = + 0dB



Ornstein-Uhlenbeck
(OU)

dXm = a[© - Xpldt + odB)
T

optimal value



Ornstein-Uhlenbeck
(OU)

dXw = a[O - Xp)at + aaB

pull towards “optimum” /



Ornstein-Uhlenbeck
(OU)

aXm = a at + oadBy



Ornstein-Uhlenbeck
(OU)

aXmy =0 + 0dBy)

when alpha is 0, OU
becomes BM



Ornstein-Uhlenbeck
(OU)

dXm = a[O - Xp]at + odB)



alpha0.4sigma0.05theta1], 1]

OU evolution

alpha 0.4 sigma=0.05

20 40 60 80

| P B

100




alpha0.1 sigma=0.01 alpha0.1 sigma=0.1

alpha0.1sigma0.01theta[, 1]

i AN
8 » S
. . —— — — AL X -s;‘f-f?f\.f@;x”' \/Y\- N\
o L
© [en TS
E
o
& % -
2 o
I I I I % ' T I I I [
20 40 60 80 100 20 40 60 80 100
Index Index



alphaOsigma0.01thetal[, 1]

alpha0 sigma=0.01 alpha0 sigma=0.1

T -

©

(b} —

é. P " H'\.""/\/\’\—‘» [J\/J\\"\A/\—v\/\ \/
— e % O o A VT o .’\\,VW ’h‘\fr/

£ Y -

® v w

w ' " AN

: .
I T I I | ™ ' [ | I I T 1
20 40 60 80 100 0 20 40 60 80 100

Index Index



Ornstein-Uhlenbeck
Model (OU)

® Evolution has a tendency to move towards
some medial value

® “Brownian motion with a spring”

® Three parameters: starting value (©), rate
(0?), and constraint parameter (&)
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T = total tree depth



Early Burst Model (EB)

® Rate of evolution slows through time

® Highest rate at the root of the tree

® Three parameters: starting value (),
starting rate (0?,), and rate change (r)




Why these three!

BM is assumed by almost all phylogenetic
comparative methods

EB corresponds to one idea of adaptive
radiation

OU may capture the importance of
constraints on evolution



How do we tell these models apart?
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OU =
stabilizing

Brownian motion =
drift or many other

o selection or many

other processes




Example: Anolis lizards

® | izards on
Caribbean islands

® Phylogenetic and
body size data for
/3 species (out of

~140 tOtaI) Anols baleatus
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OU | @729 | 182 | 0.22




00000

OOOOOHOﬁ ©000 -

[ |
o000

Cichlids in Lake Tanganyika
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Model Par.?tmeter inl Akz.like
estimates weight
BM 02=002 | -62.3 0
EB | 7% |-623| 0
OuU oo -33.3 I




Body size

Body shape

O BM
O CC
B EB
O NA

1

2 3 45 6 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31

32 33 34

35

36

37 38 39

40 41 42

43

44

45

46 47 48 49




Table 1. Number of clades and subclades showing support for each of the

three models (BM, CC, EB) for body size and body shape. We count both the

number of clades with the highest AICc values for a particular model

(“maximum w”’) and those with weights greater than 0.95 (“w > 0.95").

Clades Data set n Criterion BM CC EB
All full clades Body size 49 Maximum w 35 13 1
w > 095 9 8 0
Body shape 39 Maximum w 24 14 1
w > 095 8 8 1

All subclades Body size 284 Maximum w 200 74 10
w>0.95 0 22 0
Body shape 205 Maximum w 99 101 )
w>0.95 0 41 0



Brownian ‘““Rates” Scale with Time

A Non-birds
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“Adaptive radiation”
pattern very rare in
this data set
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® Constraints dominate
over long time
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more models...
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M1 length

BM with trend

dX

rate

= od Bt
normal
distribution where
mean=t* [

trait increases
when u > 0,
decreases when
<O
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2*log10(Bayes Factor)

usually need fossils to
detect t_rends
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Model Adequacy

® we commonly
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Assess inadequacy with
Arbutus

® https://github.com/mwpennell/arbutus

® |ibrary(devtools)

® install_github("mwpennell/arbutus”)


https://github.com/mwpennell/arbutus

Arbutus

® asks if best fit model parameters predict
summary statistics from the data

® most of these summary stats are based on
contrasts

® mean of squared contrasts
® CV of absolute contrasts

® slope of abs contrasts against expected variance
etc...
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What about “phylogenetic signal™?



“Phylogenetic signal”

A pattern where closely related species on a phylogenetic
tree have trait values that are more similar than expected by
chance.



1. We expect phylogenetic signal under a wide range of
evolutionary models.

— Brownian motion

— OU with small alpha
— multi-peak OU

— early burst



2. Phylogenetic signal is a pattern, not a process



3. Phylogenetic signal is NOT a constraint

In fact, unconstrained models (like BM) create lots of
phylogenetic signal, while constrained models (like OU) can
result in very little phylogenetic signal



Measuring Phylogenetic Signal

® Blomberg’s K statistic

® Pagel’s lambda



Measuring Phylogenetic Signal

® Blomberg’s K statistic
® measure of partitioning of variance (compared to BM)
® K >|I variance among

® K < | variance within



Measuring Phylogenetic Signal

® Blomberg’s K statistic (comparison to BM)
® measure of partitioning of variance (compared to BM)
e K >| variance among
® K < | variance within
® Pagel’s lambda (branch length transformation)
® similarity of species correlations compared to expected under BM
® J|ambda = 0: no correlation;

® |ambda =1: correlation same as Brownian






Table 1: Description of test statistics used to assess model adequacy

Test statistic Description

Mg, The mean of the squared contrasts. This is equivalent to the restricted maximum likelihood estimator of the
Brownian motion rate parameter ¢’ (Garland et al. 1992; Rohlf 2001). My, is a metric of overall rate. Violations
detected by My, indicate whether the overall rate of trait evolution is over- or underestimated.

The coefhicient of variation (standard deviation/mean) of the absolute value of the contrasts. If C, . calculated from
the observed contrasts is greater than that calculated from the simulated contrasts, it suggests that we are not
properly accounting for rate heterogeneity across the phylogeny. If C,,, from the observed is smaller, it suggests
that contrasts are even more than the model assumes. We use the coefficient of variation rather than the variance
because the mean and variance of contrasts can be highly correlated.

The slope of a linear model fitted to the absolute value of the contrasts against their expected variances (following
Garland et al. 1992). Each (standardized) contrast has an expected variance proportional to the sum of the branch

lengths connecting the node at which it is computed to its daughter lineages (Felsenstein 1985). Under a model

of Brownian motion, we expect no relationship between the contrasts and their variances. We use it to test
whether contrasts are larger or smaller than we expect based on their branch lengths. If, for example, more
evolution occurred per unit time on short branches than long branches, we would observe a negative slope. If S, ..
calculated from the observed data deviates substantially from the expectations, a likely explanation is branch
length error in the phylogenetic tree.

The slope of a linear model fitted to the absolute value of the contrasts against the ancestral state inferred at the
corresponding node. We estimated the ancestral state using the least squares method suggested by Felsenstein
(1985) for the calculation of contrasts. (We note that this is not technically an ancestral state reconstruction
[see Felsenstein 1985]; it is more properly thought of as a weighted average value for each node.) We used this
statistic to evaluate whether there is variation in rates relative to the trait value. For example, do larger organisms
evolve proportionally faster than smaller ones?

The slope of a linear model fitted to the absolute value of the contrasts against node depth (after Purvis and Rambaut
1995). This is used to capture variation relative to time. It is alternatively known as the “node-height test” and
has been used to detect early bursts of trait evolution during adaptive radiations (for uses and modifications of this
test see Freckleton and Harvey 2006; Slater and Pennell 2014).

The D statistic obtained from a Kolmolgorov-Smirnov test from comparing the distribution of contrasts to that of
a normal distribution with mean 0 and standard deviation equal to the root of the mean of squared contrasts
(the expected distribution of the contrasts under Brownian motion; see Felsenstein 1985; Rohlf 2001). We chose
this to capture deviations from normality. For example, if traits evolved via a “jump-diffusion”-type process
(Landis et al. 2013) in which there were occasional bursts of rapid phenotypic evolution (Pennell et al. 2013), the
tip data would no longer be multivariate normal owing to a few contrasts throughout the tree being much
larger than the rest (i.e., the distribution of contrasts would have heavy tails).
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Likelihood for a single
character

Brownian motion
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Multivariate Normal

variance-covariance

t A ___matrix _
t)t+t ]
€ o2
B t t)+t3
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var(A) =o2(t,+ty) cov(A,B) =0?(t))

var(B) =0?(t|+t3)



Two dimensions (X, y) correspond to tree with n=2
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More dimensions gets more complicated
Easy to do with computers



