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• So far we have discussed continuous & discrete character 
models separately – for estimating ancestral state; and for 
estimating the evolutionary correlation between characters. 

• In recent years a new model has been proposed (or, more 
accurately, an old model has been revisited) to model the 
evolutionary covariance between discrete & continuous 
character on a phylogeny (Felsenstein 2005, 2012; Revell 
2013). 

• This model is called the threshold model. 



Review: the Mk model 

• The most commonly used model for discrete character 
evolution on trees is a model called the Mk model. 

• M stands for Markov – because the modeled process is a 
continuous-time Markov chain; and k because the model is 
generalized to include an arbitrary number (k) states. 

• The central attribute of the Mk model is a transition matrix, Q, 
giving the instantaneous transition rates between states. 
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Properties of the Mk model 
• Because the process is (by definition) memoryless, a character 

that changes state from 0 -> 1 (or A -> B, etc.) has an 
indefinitely equal probability of reverting back, B -> A. 

• That probability can be large or small (even 0), but it is 
indefinitely constant. 

• In addition, for multistate data a character that has recently 
changed from A -> B immediately assumes the probability Pbj  
of subsequently changing to state j. 

• (Assuming fixation is rapid relative to the scale of time being 
studied) this could be a reasonable assumption for nucleotide 
data and some types of morphological characters. 

• However, for complex morphological & ecological characters, 
it may be time to consider another model. 
 



The threshold model 

• Wright (1934) proposed a model for 
discrete characters in which the value 
of the discrete phenotype is 
determined by an underlying , 
unobserved continuous character called 
‘liability.’ 

• If liability crossed a fixed threshold 
value, the character changed state. 

Sewall Wright  (1889-1988) 



What is liability? 

• Liability is by definition unobserved or unmeasured. 
• It could be a superficially invisible (but theoretically 

measurable) trait such as circulating blood hormone – for 
instance. 

• I also argue that liability could be a proxy for the complex, 
multilocus genetic changes that are likely to underlie a shift in 
a discretely measured ecological trait (Revell 2013). 



The threshold model 
• In spite of the long history of this 

model in quantitative genetics, 
Felsenstein (2005, 2012) was the first 
to apply it to comparative biology. 

• He developed an approach to estimate 
the evolutionary correlation between 
discrete characters, or between 
discrete and continuous traits, using 
the threshold model. 

• In that case, the correlation is merely 
the correlation of liabilities.  

Joseph Felsenstein 

• Subsequently I (Revell 2013) proposed using the threshold 
model for ancestral state reconstruction. 



Properties of the threshold model 

• The threshold model is inherently ordered. 
• Although we can use a Markov process to model the evolution 

of liability (e.g., Brownian motion), discrete character 
evolution under the threshold model is not memoryless. 

• This is because if a character changed state recently from A -> 
B, it is much more likely to change back immediately (when 
near the threshold) than far in the future. 

• The model also provides a natural framework for within-
species polymorphism (although this is not implemented so 
far). 



Properties of the threshold model 

 



Simulating under the threshold model 

• Simulating under the threshold model is trivial. 
• We just simulate liability up the tree under our continuous 

character model (say, Brownian motion); and then we  
translate our simulated liabilities to the discrete threshold 
character. 
 



Simulating under the threshold model 

1. Simulate liability up the branches of the tree under our continuous 
character model. 



Simulating under the threshold model 

2. Apply the thresholds to translate tip & node states to the discrete 
character. 



Simulating under the threshold model 

2. Apply the thresholds to translate tip & node states to the discrete 
character. 



Simulating under the threshold model 

3. Project the implied states back onto the nodes of the tree. 



Estimating ancestral states under the 
threshold model 

• Fitting the threshold model to discrete character data is 
distinctly more difficult. 

• This is because computing the probability of a character 
pattern would involve calculating a bunch of integrals of the 
multivariate normal distribution that we can’t compute (and 
this ignores the positions of the thresholds). 

• My solution is to sample the tip & node liabilities, and the 
relative positions of the thresholds, from their joint posterior 
probability distribution using Bayesian MCMC under the 
Metropolis-Hastings algorithm. 



Estimating ancestral states under the 
threshold model 

• While computing the likelihood of our discrete character data 
would be difficult; computing the likelihood (& thus posterior 
odds ratio) of a set of tip & node liabilities given the tip data & 
tree is easy: 
 

( ) ( )





≠
=

×




 −′−−

=
−+

−

yτx
yτx

C

1axC1ax
Cyτax

),(     0
),(     1

)2(

],[],[exp
),|,,,( 212)1(

0
1

02
1

0 fif
fifaa

al
inπ









model & tree

| sliabilitie
P





×
               otherwise 0.0

correct sliabilitie if 0.1
=

















thresholds& 
 states, ancestral

 s,liabilitie tip
likelihood



Estimating ancestral states under the 
threshold model 

• Something that you might observe about this expression is 
that there is no rate of liability evolution, σ2. 

• This is because liability is scaleless, thus we can fix the 
position of the threshold(s) and estimate σ2; or fix σ2, and 
estimate the positions of the thresholds – but not both. 

• What value we fix σ2 to is inconsequential, because σ2 cancels 
from the numerator & denominator of the posterior odds 
ratio during MCMC. 



Estimating the evolutionary 
correlation under the threshold model 
• In addition to ancestral states, we can also use the threshold 

model to estimate the evolutionary correlation between 
discrete traits or between discrete & continuous characters. 

• In this case the likelihood expression is as follows: 
 
 
 
 
 

• We can’t maximize the likelihood, but we can sample 
liabilities & covariances from their joint posterior probability 
distribution. 
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