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Ancestral state reconstruction 

• In ancestral character reconstruction our goal is to estimate 
the ancestral condition of phenotypic traits – usually at 
internal nodes. 

• Ideally, we should also obtain a measurement of the 
uncertainty associated with our ancestral state estimate. 



Why do we want to reconstruct 
ancestral states? 

• We have a data set of body size in Anolis lizards of 
the Caribbean, and we are interested in the ancestral 
value of one or multiple nodes in the tree. 

Anolis cuvieri 

Anolis occultus 



Why do we want to reconstruct 
ancestral states? 

• We have digit number in Lerista skinks & we are 
interested in the ancestral state at the root or the 
number of times digits have been lost in the group. 



Disclaimer 

• I’m not going to cover all methods of ancestral character 
reconstruction – in part because many have been proposed & 
so doing would be tedious. 

• I’m going to concentrate on “statistical” methods for ancestral 
character reconstruction . 

• I define this as including methods with an explicit underlying 
model (i.e., “model-based”); and for which we can compute a 
measure of our confidence in our inference to compare 
against alternative scenarios.  
 



Ancestral state reconstruction 

• The first step in ancestral character estimation involves 
identifying the type of data we are interested in analyzing. 

• For instance, we might have data measured  on a continuous 
scale (“continuous characters”) or discrete characters 
(qualitative features or characteristics that we count). 

• The distinction between continuous & discrete characters is 
not always straightforward. 

• For instance: Drosophila bristle number; scale counts on the 
midline; etc. 



Ancestral state reconstruction 

• We need to think not only about the character but also about 
the model that’s appropriate to our data. 

• For instance, whether or character is meristic or metric – is it 
more appropriate to think that it evolves by Brownian 
evolution (wandering up & down gradually through time); or 
via (more or less) instantaneous leaps between state. 



Brownian motion 

• Remember Brownian motion? 
• Brownian motion is a continuous-time stochastic process. 
• The expected distribution  of the phenotypic trait data at the 

tips the tree is multivariate normal. 



Brownian motion (on a phylogeny) 



Brownian motion (on a phylogeny) 

The expected distribution of the tips & nodes of the tree under 
Brownian motion is multivariate normal with variance-
covariance matrix in which each i,jth term is proportional to 
the height above the root for the common ancestor of i  and j. 



Ancestral state construction under 
Brownian motion 

• The tips & nodes of the tree have a multivariate normal 
density. 

• One choice of ancestral states that would make sense is to 
pick the set of ancestral states that maximize the probability 
of our data & tree. 
 
 
 
 

• These ancestral states are the maximum likelihood estimates 
(MLEs). 
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Ancestral state construction under 
Brownian motion 

• How do we find the ancestral states that maximize the 
likelihood? 

• We could  simply try different values for the ancestral states 
to try and find values that maximized the likelihood….. 



This does work – however 
it will become extremely 
inefficient as the number 
of dimensions grows. 



Ancestral state construction under 
Brownian motion 

• There are a variety of routines for numerical multivariate 
optimization. 

• However in the case of ancestral state estimation assuming 
Brownian motion, we can do even better by taking advantage 
of the contrasts algorithm. 

• It turns out to be the case that the root node estimated 
during the contrasts algorithm is also the MLE of the root. 

• To get the MLEs at every other node in the tree, we can just 
re-root at that node. 



Figure. A projection of the tree into phenotype 
space. The vertical position of internal nodes 
correspond with MLE ancestral states. 
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Figure. A projection of the observed & 
reconstructed trait values onto the phylogeny. 





But what about uncertainty…. 

• We could estimate the variance (uncertainty) in our fitted 
ancestral states using the Hessian matrix. 

• However, we are lucky here too – because there are also 
analytical solutions (and the Hessian turns out to be quite bad 
for relatively small trees). 

• We can use the variances to compute 95% CI around ancestral 
values, and test any hypothesis we might have about ancestral 
states in our character of interest. 
 



Problem 1: 
• The variance on ancestral 

character estimates is 
large. 

• For example, in the figure 
at right, the 95% CI for the 
root almost includes all 
observed values for the tip 
taxa. 

• Saying that the uncertainty 
is large is not the same as 
saying ancestral state 
estimates are wrong, 
however. 
 



Problem 2: 
• If the model is incorrect, 

ancestral character 
estimation is really bad. 

• For instance, the data at 
right were simulated with 
a trend 

• This means it is very 
important that we keep in 
mind that any hypothesis 
tests about ancestral 
character values 
dependent intrinsically on 
the validity of our fitted 
model. 



Figure. 95% CI traitgram (blue); true trait 
history (black). Recovering a trend is hard! 

What about fossils? 



What about fossils? 

• We can use Bayesian ancestral character estimation to 
incorporate prior information about the root nodes. 

• For instance, we can impose an informative prior distribution 
on one or multiple nodes based on information from the fossil 
record about ancestral phenotypes 



What about fossils? 

Figure. MLE ancestral states assuming 
constant rate BM with no prior 
information about root. 

Figure. Bayesian ancestral state 
estimates with a strong prior density on 
the root. 



Conclusions from ancestral state 
reconstruction of continuous traits 

• We can estimate states using likelihood. 
• This approach is unbiased (if our model is correct) and our 

95% CIs accurately reflect uncertainty about our estimates. 
• However, uncertainty can be very large – making inference 

about ancestral nodes (particularly deep in the tree) difficult. 
• Furthermore, if our model of evolution is “badly” wrong – our 

estimates about ancestral character states can be very biased. 
• Independently of our model – we will tend to get better 

ancestral estimates if we have prior information about the 
states at some nodes in the tree. 



Discrete characters 

• The most commonly used model for discrete character 
evolution on trees is a model called the Mk model. 

• M stands for Markov – because the modeled process is a 
continuous-time Markov chain; and k because the model is 
generalized to include an arbitrary number (k) states. 

• The central attribute of the Mk model is a transition matrix, Q. 
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• Q gives the instantaneous transition 

rates between states. 
• The rows (or columns, depending on 

the convention) must sum to zero. 
• And we can compute the probability of 

being in each state after time t as: 
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Joint vs. marginal reconstruction 

• An important distinction in ancestral character reconstruction 
for discrete characters is joint vs. marginal reconstruction. 
 

• Joint reconstruction is finding the set of character states at all 
nodes that (jointly) maximize the likelihood. 
 

• Marginal reconstruction is finding the state at the current 
node that maximizes the likelihood integrating over all other 
states at all nodes, in proportion to their probability. 



Marginal reconstruction 

• We perform marginal ancestral state reconstruction by at 
each node computing the set of empirical Bayesian posterior 
probabilities that each node is in each state. 
 
 
 

• This is equivalent (and sometimes referred to) as the scaled 
likelihoods – because (if the prior is ignored) the empirical 
Bayes posterior is the same as scaling the likelihood of x=i but 
the sum of the likelihoods that x is any i. 
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Marginal reconstruction 

Figure. True history. Figure. True binary character history with 
marginal ancestral reconstructions 
(empirical Bayes posterior probabilities). 



Joint reconstruction 

• Joint reconstruction is finding the set of states at all internal 
nodes that maximize the likelihood. 

• This is not (necessarily) equivalent to picking the state at each 
node with the highest probability. 

• We can find the single character history with the highest 
likelihood – but this is just one sample from the distribution. It 
happens to be the most likely, but it doesn’t contain any 
information about uncertainty. 

• One option is to sample node states and character histories 
from their joint (empirical or heirarchical) Bayesian posterior 
distribution. This is called stochastic character mapping. 



Stochastic character mapping 

• Stochastic character mapping is a procedure whereby we 
sample character histories in direct proportion to their 
posterior probability under a model. 

• This is accomplished by first sampling a transition matrix Q 
(from its posterior probability distribution), then sampling a 
set of ancestral states at the nodes of the tree from their joint 
conditional probability distribution given Q. Finally, we 
simulate character histories along all the edges of the tree 
conditioned on Q and our sampled node states. 



Figure. True history (above) & 
sample of stochastic character 
maps from the empirical Bayes 
posterior distribution (right). 



Figure. True history with posterior 
probabilities from stochastic mapping. 

Figure. Posterior density map from 
stochastic mapping. 



The number of changes 
on the tree 

• We can obtain a probability distribution on the number of 
changes of each type on the tree. 



Marginal vs. joint reconstruction 



Priors 

• In both marginal & joint reconstruction, we need to specify 
(or implicitly assume) a prior probability distribution for the 
global root, π0. 

• There is some debate over what constitutes the best prior 
distribution.  

• Possibilities include: a flat prior, the stationary distribution 
given the fitted or sampled transition matrix Q, and the 
empirical distribution at the tips of the tree. 

• This decision can theoretically play a large role in influencing 
the inferred ancestral character values in the tree. 



What about parsimony? 

• It turns out that we get the (or a) parsimony reconstruction of 
our character on the tree from stochastic mapping if we put a 
very strong prior on Q to be small. 

• This suggests that parsimony implicitly assumes that Q is very 
small – even if contrary evidence exist in our data suggesting 
Q is large. 

• This means that the parsimony reconstruction will only 
accurately reflect the evolutionary process for our character 
when Q is very small. 



What about parsimony? 

Figure. a) True history. b) Sampled history using empirical Q. c) 
Sampled history using true Q. d) Sampled history with a strong prior 
density on Q to be Q x 10-3. 

a. b. c. d. 



Conclusions from ancestral character 
reconstruction of discrete characters 

• Marginal ancestral state reconstruction finds the MLE at a 
node (empirical Bayes posterior probabilities) integrating over 
all other nodes. 

• Joint ancestral state reconstruction finds the set of states at 
nodes that maximize the likelihood. This need not be the set 
of states with the highest empirical Bayesian posterior 
probabilities. 

• We can use stochastic mapping to sample from the joint 
posterior probability distribution of node states & changes 
along edges. 

• Parsimony reconstruction is akin to assuming that the 
transition rates between states are very low – sometimes 
much lower than empirical estimates of those rates. 
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