
Brownian Motion



Brownian Motion

• A model for the evolution of continuously-
valued characters

• States change continuously through time

• After some time, expected character states 
follow a normal distribution



Outline - BM

• What is Brownian motion?

• When might characters evolve in a 
Brownian-like way?

• Simulating Brownian motion on trees
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Brownian Motion: The Model

• Sometimes called the Wiener process

• A continuous-time stochastic process

• Describes a “random walk” of evolution for 
continuously-valued characters



Three Facts Describe 
Brownian Motion

• Let W(t) be the value of the character at 
time t. Then:

- E[W(t)] = W(0)

- Successive steps are independent

- W(t)∼N(W(0),σ2t)



Parameters of BM

• Brownian motion models have two 
parameters:

- Θ, the starting value; W(0) = Θ

- σ2, the rate parameter
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Outline - BM

• What is Brownian motion?

• When might characters evolve in a 
Brownian-like way?

• Simulating Brownian motion on trees



A physical model for BM



Why Normal?

• BM can be used to describe motion that 
results from the combination of a large 
number of independent weak forces

• Adding many small independent variables 
result in normal distributions, no matter 
the original distribution (Central limit 
theorem)
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Evolution might 
approximate BM...

• Genetic drift

• Random punctuated change

• Selection that is weak relative to the time 
interval considered

• Selection that changes randomly through 
time
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• What is Brownian motion?

• When might characters evolve in a 
Brownian-like way?

• Simulating Brownian motion on trees







Simulating BM

• Simulating Brownian motion involves 
drawing values from normal distributions

• Variance of the distribution depends on σ2 
and t

• Values along adjacent branches are added 
from the root to the tips of the tree



1.0

1.5

1.5

2.0

0.5

0.5

1. Set root state
2. Draw random 
normal deviate for 
each branch
3. Add along path 
from root to each 
tip to get tip 
values

Θ = 0

σ2 =1.0 



1. Set root state
2. Draw random 
normal deviate for 
each branch
3. Add along path 
from root to each 
tip to get tip 
values

0.0

Θ = 0

σ2 =1.0 

1.0

1.5

1.5

2.0

0.5

0.5



1. Set root state
2. Draw random 
normal deviate for 
each branch
3. Add along path 
from root to each 
tip to get tip 
values

0.0

Θ = 0

σ2 =1.0 

0.2
∼N(0, 0.5)

0.4
∼N(0, 0.5)

1.0

1.5

1.5

2.0

0.5

0.5



1. Set root state
2. Draw random 
normal deviate for 
each branch
3. Add along path 
from root to each 
tip to get tip 
values

0.0

∼N(0, 1)

Θ = 0

σ2 =1.0 

0.2
∼N(0, 0.5)

0.4
∼N(0, 0.5)

1.0

1.5

1.5

2.0

0.5

0.5



1. Set root state
2. Draw random 
normal deviate for 
each branch
3. Add along path 
from root to each 
tip to get tip 
values

0.0

-0.1
∼N(0, 1)

Θ = 0

σ2 =1.0 

0.2
∼N(0, 0.5)

0.4
∼N(0, 0.5)

1.0

1.5

1.5

2.0

0.5

0.5



1. Set root state
2. Draw random 
normal deviate for 
each branch
3. Add along path 
from root to each 
tip to get tip 
values

0.0

-0.1
∼N(0, 1)

Θ = 0

σ2 =1.0 

∼N(0, 1.5)

0.2
∼N(0, 0.5)

0.4
∼N(0, 0.5)

1.0

1.5

1.5

2.0

0.5

0.5



1. Set root state
2. Draw random 
normal deviate for 
each branch
3. Add along path 
from root to each 
tip to get tip 
values

0.0

-0.1
∼N(0, 1)

Θ = 0

σ2 =1.0 

0.9
∼N(0, 1.5)

0.2
∼N(0, 0.5)

0.4
∼N(0, 0.5)

1.0

1.5

1.5

2.0

0.5

0.5



1. Set root state
2. Draw random 
normal deviate for 
each branch
3. Add along path 
from root to each 
tip to get tip 
values

0.0

-0.1
∼N(0, 1)

Θ = 0

σ2 =1.0 

0.9
∼N(0, 1.5)

-1.6
∼N(0, 1.5)

0.2
∼N(0, 0.5)

0.4
∼N(0, 0.5)

1.0

1.5

1.5

2.0

0.5

0.5



1. Set root state
2. Draw random 
normal deviate for 
each branch
3. Add along path 
from root to each 
tip to get tip 
values

0.0

-0.1
∼N(0, 1)

Θ = 0

σ2 =1.0 

0.9
∼N(0, 1.5)

-1.6
∼N(0, 1.5)

2.2
∼N(0, 2.0) 0.2

∼N(0, 0.5)

0.4
∼N(0, 0.5)

1.0

1.5

1.5

2.0

0.5

0.5



1. Set root state
2. Draw random 
normal deviate for 
each branch
3. Add along path 
from root to each 
tip to get tip 
values

0.0

-0.1

Θ = 0

σ2 =1.0 

0.9

-1.6

2.2

0.2

0.4

1.0

1.5

1.5

2.0

0.5

0.5



1. Set root state
2. Draw random 
normal deviate for 
each branch
3. Add along path 
from root to each 
tip to get tip 
values

0.0

-0.1

Θ = 0

σ2 =1.0 

0.9

-1.6

2.2

0.2

0.4

-0.1+0.9 = 0.8

1.0

1.5

1.5

2.0

0.5

0.5



1. Set root state
2. Draw random 
normal deviate for 
each branch
3. Add along path 
from root to each 
tip to get tip 
values

0.0

-0.1

Θ = 0

σ2 =1.0 

0.9

-1.6

2.2

0.2

0.4

-0.1+0.9 = 0.8

-1.7

1.0

1.5

1.5

2.0

0.5

0.5



1. Set root state
2. Draw random 
normal deviate for 
each branch
3. Add along path 
from root to each 
tip to get tip 
values

0.0

-0.1

Θ = 0

σ2 =1.0 

0.9

-1.6

2.2

0.2

0.4

-0.1+0.9 = 0.8

-1.7

2.4

1.0

1.5

1.5

2.0

0.5

0.5



1. Set root state
2. Draw random 
normal deviate for 
each branch
3. Add along path 
from root to each 
tip to get tip 
values

0.0

-0.1

Θ = 0

σ2 =1.0 

0.9

-1.6

2.2

0.2

0.4

-0.1+0.9 = 0.8

-1.7

2.4

2.6

1.0

1.5

1.5

2.0

0.5

0.5



1. Set root state
2. Draw random 
normal deviate for 
each branch
3. Add along path 
from root to each 
tip to get tip 
values

Θ = 0

σ2 =1.0 

0.8

-1.7

2.4

2.6

1.0

1.5

1.5

2.0

0.5

0.5



Properties of BM on 
trees

• Variance increases with both σ2 and t

• Expected (mean) value of any tip is always 
Θ

• Closely related species tend to be similar 
(they covary)
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General form

• Tip data follow a multivariate normal 
distribution with mean vector Θ and 
variance-covariance matrix where

• var(i) = σ2(di); di =distance from root to tip i

• cov(i,j) = σ2(ci,j); ci,j =shared path of tip i and j



from Revell et al. 2008
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from Revell et al. 2008

One can simply draw from this single distribution 
to ‘simulate’ BM evolution on a tree
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Phylogenetic 
Independent Contrasts
• PICs are a way to analyze data that comes 

from phylogenetic trees

• Test for evolutionary correlations among 
characters

• We can think of PICs as a statistical 
transformation that creates independent 
data points



Standard correlation

• Can we predict Y from X?

• We might be able to do this for two 
reasons: species are related, or X and Y 
tend to evolve together



Evolutionary correlation

• X and Y evolve in a correlated fashion

• When X changes, Y tends to change in a 
predictable way
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5.Calculate the standardized contrast by dividing the 
raw contrast by its variance

k
Xk

Cij = Xi - Xj

v’k Sij = Xi - Xj

vi+vj



(Felsenstein 1981)
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“time”



What are contrasts?

• The contrasts have a close relationship 
with σ2, the rate parameter from BM

• The sum of the squared contrasts divided 
by n gives the ML estimate of σ2



Using and Interpreting 
Contrasts

• Independent contrasts should be thought 
of as vectors

• They summarize information about the 
amount and direction of evolution at each 
node in the tree

• Standardized contrasts provide information 
about the rate of evolution



Using and Interpreting 
Contrasts

•This provides an unbiased 
estimate of evolutionary rate

•The expected value of this 
estimate is equal to the actual 
rate parameter

•The maximum likelihood 
estimate of the rate parameter 
is biased



• Most common use for ICs: testing for 
character correlations

• Are two characters evolving in a correlated 
fashion?

Character correlations



Character correlations

• Calculate independent contrasts for two 
characters, x and y

• Carry out a regression analysis of y on x 
with no intercept (force regression line 
through the origin)

• P < 0.05, then reject the null hypothesis of 
no evolutionary correlation
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Character correlations

• Why force contrasts through the origin?

• Because, for each contrast, the direction of 
subtraction is arbitrary; the signs of all the 
contrasts could be reversed

• Regression through the origin treats the 
contrasts as vectors



Liam will tell you how to calculate contrasts in R and 
what you can use them for!


