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Brownian Motion

® A model for the evolution of continuously-
valued characters

® States change continuously through time

® After some time, expected character states
follow a normal distribution



Outline - BM

® VWhat is Brownian motion?

® When might characters evolve in a
Brownian-like way!?

® Simulating Brownian motion on trees
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Brownian Motion: T he Model

® Sometimes called the Wiener process
® A continuous-time stochastic process

® Describes a “random walk” of evolution for
continuously-valued characters



Three Facts Describe
Brownian Motion

® | et W(t) be the value of the character at
time t. Then:

- E[W(t)] =W(0)
- Successive steps are independent

- W(t)~N(W(0),02t)



Parameters of BM

® Brownian motion models have two
parameters:

- 0O, the starting value;W(0) = ©

- 02, the rate parameter
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Outline - BM

® VWhat is Brownian motion?

® When might characters evolve in a
Brownian-like way?

® Simulating Brownian motion on trees



A physical model for BM

UNIVERSITY OF ALABAMA




Why Normal?

® BM can be used to describe motion that
results from the combination of a large
number of independent weak forces

® Adding many small independent variables
result in normal distributions, no matter
the original distribution (Central limit
theorem)
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Evolution might
approximate BM...

Genetic drift
Random punctuated change

Selection that is weak relative to the time
interval considered

Selection that changes randomly through
time



Outline - BM

® VWhat is Brownian motion?

® When might characters evolve in a
Brownian-like way!?

® Simulating Brownian motion on trees
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Simulating BM

® Simulating Brownian motion involves
drawing values from normal distributions

® Variance of the distribution depends on 0%
and t

® Values along adjacent branches are added
from the root to the tips of the tree



1.0

2.0

o2=1.0

|.5

|.5

0.5

0.5

|. Set root state

2. Draw random
normal deviate for
each branch
3.Add along path
from root to each
tip to get tip
values



0.0

1.0

2.0

o2=1.0

|.5

|.5

0.5

0.5

|. Set root state

2. Draw random
normal deviate for
each branch
3.Add along path
from root to each
tip to get tip
values



0.0

1.0

2.0

o2=1.0

|.5

|.5

0.5

~N(0,0.5)
0.2

~N(0,0.5)
) 04

|. Set root state

2. Draw random
normal deviate for
each branch
3.Add along path
from root to each
tip to get tip
values



0.0

1.0
~N(O, I

2.0

o2=1.0

|.5

|.5

0.5

~N(0,0.5)
0.2

~N(0,0.5)
) 04

|. Set root state

2. Draw random
normal deviate for
each branch
3.Add along path
from root to each
tip to get tip
values



0.0

1.0
~N(O, I)
0.1

2.0

o2=1.0

|.5

|.5

0.5

~N(0,0.5)
0.2

~N(0,0.5)
) 04

|. Set root state

2. Draw random
normal deviate for
each branch
3.Add along path
from root to each
tip to get tip
values



0.0

1.0
~N(O, I)
0.1

2.0

o2=1.0

|.5
~N(0, 1.5)

|.5

0.5

~N(0,0.5)
0.2

~N(0,0.5)
) 04

|. Set root state

2. Draw random
normal deviate for
each branch
3.Add along path
from root to each
tip to get tip
values



0.0

1.0
~N(O, I)
0.1

2.0

o2=1.0

|.5
~N(0, 1.5)
0.9

|.5

0.5

~N(0,0.5)
0.2

~N(0,0.5)
) 04

|. Set root state

2. Draw random
normal deviate for
each branch
3.Add along path
from root to each
tip to get tip
values



0.0

1.0
~N(O, I)
0.1

~N(0, 1.5)

0.9

~N(0, 1.5)

2.0

o2=1.0

-1.6

|.5

|.5

0.5

~N(0,0.5)
0.2

~N(0,0.5)
) 04

|. Set root state

2. Draw random
normal deviate for
each branch
3.Add along path
from root to each
tip to get tip
values



|.5
~N(0, 1.5)
0.9

1.0
~N(O, 1)
0.1 ~N(0, 1.5)
1.6 s

0.0

~N(0, 2.0)
2.2 2.0

©=0

o2=1.0

0.5

~N(0,0.5)
0.2

~N(0,0.5)
) 04

|. Set root state

2. Draw random
normal deviate for
each branch
3.Add along path
from root to each
tip to get tip
values



0.0

1.0

-0.1

|.5

0.9

|.5

-1.6

0.5

0.2

0.5
0.4

|. Set root state

2. Draw random
normal deviate for
each branch



0.0

1.0

-0.1

|.5

0.9

|.5

-1.6

2.0

2.2

o2=1.0

0.5

0.2

0.5
0.4

-0.1+0.9 = 0.8

|. Set root state

2. Draw random
normal deviate for
each branch



0.0

1.0

-0.1

|.5

0.9

|.5

-1.6

2.0

2.2

o2=1.0

-0.1+0.9 = 0.8

|. Set root state

2. Draw random

normal deviate for
-1.7 each branch

0.5

0.2

0.5
0.4



0.0

1.0

-0.1

|.5

0.9

|.5

-1.6

2.0

2.2

o2=1.0

-0.1+0.9 = 0.8

|. Set root state

2. Draw random

normal deviate for
-1.7 each branch

= ) 4
0.2

0.5
0.4



0.0

1.0

-0.1

|.5

0.9

|.5

-1.6

2.0

2.2

o2=1.0

-0.1+0.9 = 0.8

|. Set root state

2. Draw random

normal deviate for
-1.7 each branch

3.Add along path
0.5 7 4 from root to each

0.2 tip to get tip
values
206
0.4



1.0

2.0

o2=1.0

|.5

|.5

0.5

0.5

0.8

|. Set root state

2. Draw random

normal deviate for
-1.7 each branch

2.4

2.6



Properties of BM on
trees

® Variance increases with both 02 and t

® Expected (mean) value of any tip is always

©

® Closely related species tend to be similar
(they covary)



How do they covary!?
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How do they covary!?

var(A) =0?(t+t2) cov(A,B)

var(B) =0?(t|+t3)



How do they covary!?

A

0-2

B
03

var(A) =o2(t,+ty) cov(A,B) =0?(t))

var(B) =0?(t|+t3)



How do they covary!?

variance-covariance

t A _ matrix _
t)t+t 4
€ o2
B t t)+t3
3 — —

var(A) =o2(t,+ty) cov(A,B) =0?(t))

var(B) =0?(t|+t3)



General form

® Tip data follow a multivariate normal
distribution with mean vector ® and
variance-covariance matrix where

® var(i) = 0%(di); di =distance from root to tip i

® cov(i,j) = 0%(ci); cij =shared path of tip i and |
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phenotype
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time

oo >

from Revell et al. 2008



C)

Expected covariance among species (02 = 1.0):
v, 0.0 00 | [20 00 00
C=[00 vy+vge Ve, =100 2.0 1.0
0.0 V.0 Ve + Vg e 0.0 1.0 2.0

Z

Observed covariance among species
(N=100 simulations):

1.85 0.1 —024 |
C=| 0.11 208 084
-0.24 084 1.94

phenotype

phenotype

time

from Revell et al. 2008



A
vg = 1.0
B
Vis.c) = 1.0
c)
ve = 1.0 . :
C Expected covariance among species (0% = 1.0):
. v, 0.0 0.0 20 00 00 |
) C{0.0 Ve FVaer Ve 1{0.0 20 1.0
[ | . 0.0 Vig oo Ve + Vg o 0.0 1.0 2.0~
2 One can simply draw from this single distribution
© . .
5 to ‘simulate’ BM evolution on a tree
b A WMM 10w VA V.o
= C C=| 0.11 208 0.4
: -024 084 194 |
= A
2 B
Q

time

from Revell et al. 2008



Phylogenetic
Independent Contrasts

(PICs)
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Phylogenetic
Independent Contrasts

® PICs are a way to analyze data that comes
from phylogenetic trees

® Test for evolutionary correlations among
characters

® We can think of PICs as a statistical
transformation that creates independent
data points



Standard correlation

® Can we predictY from X!

® VWe might be able to do this for two
reasons: species are related, or X andY
tend to evolve together



Evolutionary correlation

® X andY evolve in a correlated fashion

® When X changes,Y tends to change in a
predictable way
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Calculating Contrasts™

I .Find two tips on the phylogeny that are adjacent
(say nodes i and j) and have a common ancestor,
say node k

2.Compute the contrast Xi-X,. This has expectation
zero and variance proportional to vitv;
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Calculating Contrasts™

3 .Remove the two tips from the tree, leaving behind
only the ancestor k, which now becomes a tip. Assign
it the character value:

- (Ihv) X + (1) X
B /v + 1/v; '

X,

This is a weighted average of X and Xj, but not an
ancestral state reconstruction.
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Calculating Contrasts™

3 .Remove the two tips from the tree, leaving behind
only the ancestor k, which now becomes a tip. Assign
it the character value:

_ (I/v;) X; + (1/vy) X;

Ak /v + 11y,

This is a weighted average of X and Xj, but not an
ancestral state reconstruction.

Cij = X - Xj

Vi
+— X



Calculating Contrasts™

4.Lengthen the branch below node k by increasing its
length from vi to vitvivi/(vitv;j). This accounts for the
error in assigning a value to Xy.

Cij = X - Xj
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Calculating Contrasts™

5 .Calculate the standardized contrast by dividing the
raw contrast by its variance

Cij = X - Xj



Calculating Contrasts™

5 .Calculate the standardized contrast by dividing the
raw contrast by its variance

Cij = X - Xj
Vk N i = Xi- X

VitV;



TABLE 1

THE Four CONTRASTS EXTRACTED FROM THE PHYLOGENY
SHowN IN FIGURE 9, EAcH wWiTH I1S VARIANCE, ALL
CoMpPUTED USING STEPS 1—-4 IN THE TEXT

CONTRAST VARIANCE
X| - Xz Yy + Vo
X4 - X5 Vg T Vs
X3 - X6 1"3 + l"(',
X; — Xy Ve + vy

where

V4 X_q + Vs X4

X( =
’ V4 + Vs

Ve = Vg + V4 Vsl(vy + vs)

Va X| -1 V1 X'_')_

V1 + Vs

X7=

v = vy + vy val(vy + va)

V(', X3 + V3 X(,
V3 + Ve

X3=

vg = v + vy vel(vy + vg)

————

(Felsenstein 1981)



What are contrasts!?

® Fach standardized contrast is telling us
something about the RATE of evolution
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What are contrasts!?

® Fach standardized contrast is telling us
something about the RATE of evolution

Sij = Xi - X; “amount of change”

Vity; “time”



What are contrasts!?

® The contrasts have a close relationship
with 0%, the rate parameter from BM

® The sum of the squared contrasts divided
by n gives the ML estimate of G2



Using and Interpreting
Contrasts

® |ndependent contrasts should be thought
of as vectors

® They summarize information about the
amount and direction of evolution at each
node in the tree

® Standardized contrasts provide information
about the rate of evolution



Using and Interpreting
Contrasts

* This provides an unbiased
estimate of evolutionary rate
n2 zSi *The expected value of this
n-1 estimate is equal to the actual
rate parameter
* The maximum likelihood
estimate of the rate parameter
is biased




Character correlations

® Most common use for |ICs: testing for
character correlations

® Are two characters evolving in a correlated
fashion!?



Character correlations

® (Calculate independent contrasts for two
characters, x and y

® Carry out a regression analysis of y on x
with no intercept (force regression line
through the origin)

® P < 0.05, then reject the null hypothesis of
no evolutionary correlation
























Character correlations

® Why force contrasts through the origin?

® Because, for each contrast, the direction of
subtraction is arbitrary; the signs of all the
contrasts could be reversed

® Regression through the origin treats the
contrasts as vectors



Liam will tell you how to calculate contrasts in R and
what you can use them for!



