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Abstract
Investigating the properties of ecological landscapes that influence gene flow among populations can pro-

vide key insights into the earliest stages of biological divergence. Both ecological and geographical factors

can reduce gene flow, which can lead to population divergence, but we know little of the relative strengths

of these phenomena in nature. Here, we use a novel application of structural equation modelling to quan-

tify the contributions of ecological and geographical isolation to spatial genetic divergence in 17 species of

Anolis lizards. Our comparative analysis shows that although both processes contributed significantly, geo-

graphical isolation explained substantially more genetic divergence than ecological isolation (36.3 vs. 17.9%

of variance respectively), suggesting that despite the proposed ubiquity of ecological divergence, non-eco-

logical factors play the dominant role in the evolution of spatial genetic divergence.
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INTRODUCTION

Understanding the factors that contribute to population genetic

divergence is a long-standing goal in ecology and evolution (Wright

1921; Mayr 1963; Coyne & Orr 2004). Patterns of genetic variation

often reflect spatial variation in gene flow, which can be influenced

by ecological landscapes in two important ways. Spatially separated

populations may experience isolation-by-distance (IBD; Wright

1943), in which landscape barriers and geographical distances cause

restricted gene flow, and isolation-by-environment (IBE; Wang &

Summers 2010), in which gene flow among populations inhabiting

different ecological environments is limited either by selection

against dispersers moving between them or by individual preference

to remain in a particular environment due to local adaptation (Do-

bzhansky 1937). IBD predicts a correlation between genetic diver-

gence and geographical factors such as landscape barriers and

geographical distance, and IBE predicts a correlation between

genetic divergence and environmental dissimilarity, because greater

environmental differences between populations are expected to be

associated with stronger divergent selection and reduction in the

success of dispersers (Crispo et al. 2006; Lee & Mitchell-Olds 2011).

Of course, geographical and environmental isolation are not mutu-

ally exclusive, and spatial genetic divergence among populations can

result from reduced gene flow associated with both geographical

and ecological factors (e.g. Coyne & Orr 2004; Crispo et al. 2006;

Thorpe et al. 2008).

Despite the large body of research on patterns of genetic diver-

gence, few studies have quantified the contributions of IBD and

IBE to spatial genetic divergence, especially at comparative scales

necessary to investigate the strengths and prevalence of these rela-

tionships in nature (Thorpe et al. 2008; Schluter 2009; Sobel et al.

2010). Historically, studies of population divergence have focused

on IBD (Wright 1943), while recent studies have argued that IBE

plays a dominant role in the evolution of genetic divergence

(Thorpe et al. 2008; Nosil 2012). The relative contributions of these

two factors is still debated, and understanding their effects on the

reduction of gene flow among populations can inform our under-

standing of how landscapes and environments shape patterns of

genetic variation in nature (Cushman et al. 2006; Wang & Summers

2010; Lee & Mitchell-Olds 2011).

Because populations that are geographically distant also tend to

occupy different environments, disentangling the effects of IBD

and IBE is inherently difficult and remains a major challenge. How-

ever, the rise of modern spatial statistical methods and the increas-

ing availability of high-resolution geographical and environmental

data layers now makes it possible to accurately describe geographical

and ecological landscapes and to simultaneously estimate the effects

of IBD and IBE on spatial genetic divergence. The genetic conse-

quences of IBD and IBE are often best studied in widespread

organisms with spatially structured population divergence (Thorpe

et al. 2004; Sobel et al. 2010). Thus, comparative analyses of such

species can provide valuable insights into the evolution of genetic

divergence among populations.

In this study, we use a novel implementation of SEM to quantify

the contributions of IBD and IBE to spatial genetic divergence in

17 widespread species in the diverse adaptive radiations of Anolis

lizards on the Greater Antilles. We used this approach to test pre-

dictions stemming from three alternative hypotheses: (1) geographi-

cal distances and barriers limit gene flow between populations such

that IBD contributes significantly to spatial genetic divergence,

(2) divergent selection in different environments reduces gene flow

between populations such that IBE contributes significantly to spa-

tial genetic divergence and (3) geographical distances and divergent

selection each influence gene flow such that IBD and IBE both

contribute significantly to spatial genetic divergence. In all cases, we

quantified the relative strengths of IBD and IBE for each species.

Previous work suggests that anole species often inhabit heteroge-

neous environments (Losos & Ricklefs 2009), have substantial levels

of genetic variation (e.g. Glor et al. 2003; Kolbe et al. 2004) and

adapt to local ecological conditions (e.g. Thorpe et al. 2004;

Calsbeek et al. 2006), making them excellent study systems for

examining the evolution of spatial genetic divergence (Ogden &
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Thorpe 2002; Thorpe et al. 2008). By investigating numerous wide-

spread species across four large islands, we were able to conduct a

comparative analysis of the factors affecting spatial genetic variation

across ecologically diverse species and landscapes.

MATERIALS AND METHODS

Genetic data

We assembled neutral DNA sequence data sets for 17 widespread

species of Anolis lizards, each inhabiting one of the four Greater

Antillean islands. For 12 species, we acquired sequence data from pre-

viously published studies: Anolis allisoni (ND2 and tRNAs; Glor et al.

2004), Anolis cooki (ND2 and cytB; Jezkova et al. 2009), Anolis chlorocy-

anus, Anolis crisatellus, Anolis cybotes (ND2 and tRNAs; Kolbe et al.

2007), Anolis distichus dominicensis, Anolis distichus ignigularis (ND2 and

tRNAs; Glor & Laport 2012), Anolis krugi (ND2 and tRNAs;

Rodriguez-Robles et al. 2010), Anolis poncensis (ND2 and cytB; Jezkova

et al. 2009), Anolis porcatus (ND2 and tRNAs; Glor et al. 2004), Anolis

sagrei (ND2 and tRNAs; Kolbe et al. 2004) and Anolis whitemani (ND2,

tRNAs, ND1, COI and control region; Glor et al. 2003). For five

other species, Anolis equestris, Anolis garmani, Anolis grahami, Anolis linea-

topus and Anolis stratulus, we collected DNA sequences from the ND2

gene and adjacent tRNATrp and tRNAAla following previously pub-

lished methods (Glor & Laport 2012). To be included in our study, a

species had to have genetic data collected from multiple localities with

precise GPS coordinates providing < 100 m accuracy (at least four

significant decimal-degree digits) or with locality information detailed

enough to acquire coordinates with this accuracy (Fig. 1). In practice,

most localities were georeferenced on-site using hand-held GPS units.

For this study, we consider the subspecies of A. distichus to be distinct

species, based on a recent report recommending that they be elevated

to species status (Glor & Laport 2012).

For our mtDNA data set, we calculated between-locality genetic

divergence using a maximum composite likelihood model of nucleo-

tide evolution that allowed for gamma-distributed rate variation

among sites in MEGA (Tamura et al. 2007). We then used these

data to construct a matrix of genetic distances between localities in

each species. For three species for which nDNA data were available

(A. allisoni, A. chlorocyanus and A. porcatus), we also constructed

nDNA genetic distance matrices and concatenated mtDNA and

nDNA genetic distance matrices. We considered point localities to

be the relevant sampling units in our study because our method

does not rely on using a metapopulation model of reproductively

isolated populations and, like many other approaches to examining

spatial genetic patterns, can be applied to species with individuals

distributed continuously on a landscape (Rousset 2000; Cushman

et al. 2006). In practice, Anolis lizards are typically highly territorial

and have small home ranges (Schoener & Schoener 1982; Johnson

et al. 2009), suggesting that these species will have compact genetic

neighbourhoods (Wright 1943) that should generally be smaller than

the distances between our sampling localities.

Environmental data

We acquired geographic information systems (GIS) data layers for a

total of 24 environmental and geographical variables, including 19

bioclimatic variables with 1-km resolution from the WorldClim data-

base (http://www.bioclim.org), four vegetation variables from the

MODIS land cover database with 250-m resolution (leaf area index,

normalised difference vegetation index, tree density and herbaceous

density; http://modis.gsfc.nasa.gov/) and a digital elevation model

with 30-m resolution from the USGS EROS database (http://eros.

usgs.gov). We extracted values for each variable at every locality for

each species using ArcGIS (ESRI) and calculated differences

between localities to create a dissimilarity matrix for each variable.

Geographical distances

Resistance-based (also known as cost-weighted) distances have been

shown to more closely reflect gene flow between populations than

direct distances for a variety of organisms (Cushman et al. 2006;

McRae & Beier 2007). These distances account for variation in the

ease of movement across a heterogeneous landscape by assigning

relative resistances (or costs) to different landscape features (McRae

& Beier 2007; Storfer et al. 2010). To assign resistances to each cell

in a landscape data layer for each species, we followed a method

Figure 1 Sampling localities for the 17 species examined in this study from the

four Greater Antillean islands (Cuba, Hispaniola, Jamaica and Puerto Rico).

Localities are represented as coloured and patterned circles on a topographic

relief map. Overlapping circles indicate multiple species collected from the same

site.
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for translating niche model suitability scores into resistances (Wang

et al. 2008). We first created a niche model for each species using

MAXENT (Phillips et al. 2006), which uses occurrence data and envi-

ronmental layers to predict the environmental suitability of each cell

in the study area. As input data, we used the 24 environmental and

geographical data layers and an average of 110 occurrence records

for each species (Table 1). Occurrence records were collected from

our data, previously published studies and the HerpNet/VertNet

species database of museum records from 55 institutions (www.vert-

net.org). To evaluate how accurately the resulting GIS layer reflects

the suitability of the landscape to the species being modelled, we

performed a receiver operating characteristic (ROC) analysis (Phil-

lips et al. 2006) and found that it indicated a good fit (AUC > 0.858

in all cases) to the species distribution model for each species (Phil-

lips et al. 2006). MAXENT estimates environmental suitability values

ranging from 0–1, and higher scores indicate more suitable habitat.

We used the reverse of these values, because lower suitability

should have a higher resistance, to assign resistances to each cell in

the study area of each species.

We then used the resulting resistance layers to obtain geographi-

cal distance matrices using two alternative measures of geographical

distance: (1) least-cost path distances calculated using ArcGIS and

(2) circuit distances calculated using CircuitScape (McRae & Beier

2007). Least-cost path distance is calculated by searching for the

path that minimises the total cumulative cost (or resistance)

between two points (Wang et al. 2009), and circuit distance is calcu-

lated by summarising the costs of all possible paths between two

points (McRae & Beier 2007). For least-cost path distances, our

estimates were adjusted for the additional distance between points

imposed by topographical relief based on the digital elevation

model; this adjustment is not currently available in CircuitScape.

These analyses resulted in two matrices of the geographical dis-

tances between localities for each species.

Although the geographical distance and environmental dissimilar-

ity estimates both use the same set of 24 environmental variables,

those variables are actually utilised very differently. In one case

(environmental dissimilarity), only the raw values at specific points

are considered, whereas in the other (geographical distance), the full

data layers are processed to infer another variable, habitat suitability,

which is then used in measuring the weighted distances along paths

(or sets of paths) between localities. Thus, geographical distance

and environmental dissimilarity are not necessarily correlated. For

instance, if two populations inhabited localities with identical scores

for each environmental variable, they would have an environmental

dissimilarity of zero but a geographical distance greater than zero as

long as they have any spatial separation. Nevertheless, to make sure

that any associations with geographical distance were not driven by

the inclusion of environmental variables, we also calculated topo-

graphic distances between localities.

Structural equation modelling

To estimate the relative contributions of geographical distance and

environmental dissimilarity to genetic divergence, we utilised a struc-

tural equation modelling (SEM) framework (Grace 2006). Originally

developed by the geneticist Sewall Wright (1921), SEM is a statisti-

cal framework for evaluating complex relationships between multi-

ple variables that uses a series of regression and model-fitting

analyses to calculate correspondence among any number of vari-

ables whose relationships are hypothesised a priori (Grace 2006;

Santos & Cannatella 2011). SEM is, therefore, an ideal framework

for testing hypotheses about the contributions of a large number of

different variables associated with geographical distance and envi-

ronmental variation to genetic divergence. Specifically, we estimated

the strength of IBD from the effects of geographical distance on

genetic divergence while controlling for environmental dissimilarity,

Table 1 Data used in structural equation modelling (SEM) and their associated results for 17 Anolis species. Data include the number of sampling localities (Loc.), the

number (Seq.) and length in base pairs (bp) of sequences used in genetic comparisons and the number of occurrence points (Occ.) used in niche modelling. For each

species, SEM was used to quantify the proportion of genetic divergence explained by isolation-by-distance (IBD) and isolation-by-ecology (IBE), presented as maximum-

likelihood estimates ± standard errors (values in italics are non-significant). Also listed are the sums of IBD and IBE (Total), the covariation between these variables

(Covar.) and the primary contributors (Contrib. vars.) to the environmental dissimilarity latent variable (individual factor loading coefficients > 0.7)

Study system Data Results

Species Island Loc. Seq. bp Occ. IBD IBE Total Covar. Contrib. vars.

Anolis allisoni Cuba 20 94 1173 59 0.464 ± 0.074 0.237 ± 0.080 0.701 0.198 Precip.

Anolis equestris Cuba 10 13 1219 31 0.438 ± 0.137 0.194 ± 0.071 0.632 0.335 Temp., Precip., Veg.

Anolis porcatus Cuba 20 59 1173 110 0.796 ± 0.046 0.060 ± 0.010 0.856 0.101 Precip.

Anolis sagrei Cuba 56 197 1475 108 0.475 ± 0.023 0.140 ± 0.020 0.615 0.240 Temp., Elev.

Anolis chlorocyanus Hispaniola 21 59 1504 277 0.030 ± 0.008 0.189 ± 0.014 0.219 0.014 Precip.

Anolis cybotes Hispaniola 47 114 1109 681 0.405 ± 0.029 0.044 ± 0.028 0.449 0.167 Temp., Elev.

Anolis distichus dominicensis Hispaniola 8 18 1462 145 0.047 ± 0.024 0.200 ± 0.098 0.247 0.042 Temp., Elev.

Anolis distichus ignigularis Hispaniola 7 25 1462 65 0.310 ± 0.173 0.477 ± 0.180 0.787 0.302 Temp.

Anolis whitemani Hispaniola 12 17 1921 46 0.075 ± 0.061 0.219 ± 0.065 0.294 0.114 Temp., Precip., Elev.

Anolis garmani Jamaica 14 21 1213 14 0.698 ± 0.075 0.001 ± 0.002 0.699 0.059 Temp., Elev., Veg.

Anolis grahami Jamaica 20 48 1548 36 0.487 ± 0.063 0.006 ± 0.004 0.493 0.022 Temp., Elev.

Anolis lineatopus Jamaica 20 71 1548 42 0.345 ± 0.028 0.005 ± 0.005 0.350 0.009 Temp., Elev.

Anolis cooki Puerto Rico 6 52 2124 21 0.529 ± 0.216 0.115 ± 0.102 0.644 0.513 Temp., Precip.

Anolis cristatellus Puerto Rico 20 89 1436 71 0.157 ± 0.065 0.394 ± 0.158 0.551 0.093 Precip.

Anolis krugi Puerto Rico 52 208 2001 72 0.242 ± 0.027 0.001 ± 0.002 0.243 0.086 Temp., Elev.

Anolis poncensis Puerto Rico 6 56 2129 20 0.416 ± 0.220 0.327 ± 0.225 0.743 0.248 Temp., Precip.

Anolis stratulus Puerto Rico 19 92 1452 71 0.301 ± 0.076 0.213 ± 0.077 0.514 0.048 Temp.

mean 21.1 72.5 1526.5 109.9 0.363 ± 0.208 0.179 ± 0.146 0.543 0.152
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and we estimated the strength of IBE from the effects of environ-

mental dissimilarity on genetic divergence while controlling for geo-

graphical distance.

One of the advantages of SEM is that it can use latent variables –
variables that are not directly measured but instead inferred from a

set of observed variables. In our model, we described geographical

distance and environmental dissimilarity as latent variables because

we wanted to infer the best-fitting values rather than assume that

geography or environment could be summarised by some arbitrary

method. Essentially, geographical distance and environmental dissim-

ilarity are both complex variables that are difficult to measure,

because determining the biologically relevant variables is complicated

and we had no a priori expectation for how those variables should be

weighted. Thus, modelling these as latent variables was a more sensi-

ble and conservative approach. We inferred the geographical distance

latent variable from our two measurements of distance (least-cost

path distance and circuit distance), and we inferred the environmen-

tal dissimilarity latent variable from our set of 24 environmental vari-

ables. Prior to analysis, all observed variables were standardised. We

also defined regression pathways between geographical distance and

genetic divergence, and between environmental dissimilarity and

genetic divergence, and a covariance pathway between geographical

distance and environmental dissimilarity (Fig. 2). The estimated coef-

ficients of these pathways can be used to quantify the relative effects

of IBD and IBE on spatial genetic divergence, while controlling for

covariation between geographical distance and environmental dissim-

ilarity (‘Covar.’ in Fig. 2).

We solved the model by simultaneously estimating all parameters

using maximum-likelihood estimation (MLE) in the ‘lavaan’ package

in R (http://cran.r-project.org/web/packages/lavaan/). By estimat-

ing the parameters simultaneously, we were able to optimise the fit

of each parameter, including the regression pathways connecting

latent variables and the indicator pathways used to manifest the

latent variables, while controlling for covariation among variables.

So, we estimated the best fit of geographical distance and environ-

mental dissimilarity to genetic divergence while determining the best

estimates of geographical distance and environmental dissimilarity

from their respective indicator variables. Standard errors for each

parameter were determined by calculating Huber–White robust stan-

dard errors (White 1980) based on the residuals of the fitted model.

We incorporated a matrix permutation procedure for significance

testing because of the distance matrix format of our data and

assessed the overall goodness of fit for each model using the Akaike

information criterion (AIC), which provides a metric for model

selection by comparing the likelihoods of a set of models while

penalising for their numbers of parameters. Lower AIC scores indi-

cate closer fit to the true model, and models with AIC scores that

exceed the lowest model by 10 or more are not supported (Burn-

ham & Anderson 1998).

To test whether geographical distance and environmental dissimi-

larity contributed significantly to the model, we compared the AIC

from the full model to the AICs from a model excluding the geo-

graphical variables and from one excluding the environmental vari-

ables. We performed the SEM analysis using models that tested

three alternative hypotheses: (1) only geographical distance contrib-

utes significantly to genetic divergence, (2) only environmental dis-

similarity contributes significantly to genetic divergence and

(3) geographical distance and environmental dissimilarity each con-

tribute significantly to genetic divergence (Fig. 2). We performed

this analysis on mtDNA sequence divergence from all 17 species

included in our study. We examined the results for each species

individually (Table 1), and, to draw comparisons between islands,

we also averaged the results of all species on each island.

Method validation

The development of methods for the study of spatial genetic varia-

tion is still very fluid, and universally suitable analytical frameworks

are yet to emerge (Storfer et al. 2010). In general, evaluating a new

method requires understanding its accuracy, its assumptions and its

advantages and disadvantages. To confirm the consistency of our

results with other similar methods, we performed two additional

multiple regression-based analyses on our mtDNA data set. First, we

performed generalised dissimilarity modelling (GDM; Ferrier et al.

2007), using the ‘GDM’ package in R (Ferrier et al. 2007). GDM

allows for nonlinear relationships between predictor and response

variables, but only currently implements direct distance (instead of

resistance-based distances), because the geographical distance matrix

is computed from raw GPS coordinates. Second, we performed a

variation partitioning analysis (Legendre & Fortin 2010) using the

‘vegan’ package in R (Oksanen et al. 2007). Variation partitioning

uses multiple regression to assign proportions of variation in a

response variable to a set of explanatory variables, and canonical

redundancy analysis to assess the significance of each proportion.

Although similar in principal to our SEM method, there are notable

differences. For instance, SEM uses latent variables, which allows

for some variables to be inferred from others and for the relation-

ships among all variables to be estimated simultaneously. Because

GDM and variation partitioning do not use latent variables, for these

analyses, we first reduced the number of predictor variables in our

data set by performing a principal components analysis (PCA) on

the 24 environmental variables using the ‘prcomp’ function in R. In

addition, unlike GDM and variation partitioning, SEM estimates

error around the maximum-likelihood estimate for each parameter

and provides an information-theoretic output for assessing parame-

ter importance. Thus, for our goals, SEM provides several distinct

advantages over other similar methods. However, while SEM is

powerful for isolating the effects of individual variables, it cannot be

used to estimate the effects of variation shared among variables. For

Figure 2 Graphical representation of the structural equation model used to

quantify the relationships between geographical distance, environmental

dissimilarity and genetic divergence. Observed variables are enclosed in boxes,

whereas latent variables are enclosed in circles (geographical distance and

environmental dissimilarity). Single-headed arrows show the observed variables

used to infer each latent variable. Solid double-headed arrows indicate regression

pathways, and dashed double-headed arrows indicate covariance pathways.
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our application, this means that we can use SEM to disentangle the

effects of geographical and environmental distances on genetic diver-

gence individually, but that we cannot quantify the effects of shared

variation between geographical and environmental distances on

genetic divergence, a drawback that also exists with GDM but not

variation partitioning. Finally, an assumption of each methods is that

inferences made using current data, both environmental and genetic,

reflect the processes that produced genetic divergence. Thus, these

analyses are most reliably applied to genetic markers that capture

recent and ongoing processes and when the contemporary geogra-

phy and environment of the study area has not changed substantially

since patterns of genetic variation were established.

To test whether the form in which we used environmental vari-

ables affected the results, we repeated the SEM analysis for each

species using environmental PC axes or topographic distances. To

visualise the relationships between geographical distance, environ-

mental dissimilarity and genetic divergence, we plotted genetic

divergence vs. geographical distance, genetic divergence vs. environ-

mental dissimilarity and geographical distance vs. environmental dis-

similarity for each species (Fig. S1). For these plots, we averaged

least-cost path and circuit distances to estimate geographical dis-

tance and calculated the distances between points for each popula-

tion plotted against the two major environmental PC axes to

estimate environmental dissimilarity.

Finally, to compare results from different molecular markers, we

repeated the analysis on mtDNA and nDNA sequences together and

on nDNA sequences alone from the three species (A. allisoni, A. chlor-

ocyanus and A. porcatus) for which extensive nDNA sampling was

available. Because nDNA data were not available from all localities

for these species, analyses on nDNA alone and concatenated

mtDNA and nDNA sequences were performed on a subset of the

localities used in mtDNA analyses (Table S3). To allow comparisons

between different molecular markers, we also reran the SEM analysis

on mtDNA data alone from the subset of localities with nDNA data.

RESULTS

Genetic, geographical and environmental data

We assembled mtDNA sequence data sets for 17 widespread anole

species and nDNA sequence data sets for three species. For our

mtDNA data sets, we acquired an average sequence length of

1527 bp from 72.5 individuals from 21 localities per species. We

found a wide range of variation (from < 0.5% between some locali-

ties to > 15% among others) with an average of 5.6% sequence

divergence between localities within each species. The 24 environ-

mental GIS layers used in our study indicated that each of the four

Greater Antillean islands is environmentally heterogeneous, with

each species typically being distributed across a broad range of envi-

ronmental conditions (Fig. 1). The two cost-weighted distances we

calculated (least-cost path and circuit distances) were highly corre-

lated (r2 > 0.65 in all cases) and roughly equally weighted in estimat-

ing a geographical distance latent variable (Table S1).

Structural equation modelling

The SEM analysis revealed that IBD explained a significant propor-

tion of genetic divergence for 15 species, and IBE explained a signif-

icant proportion of genetic divergence in 13 species (Table 1;

Fig. 3). In each case, the full model including both IBD and IBE

was a significantly better fit to the data based on model-fit scores

(AIC) than a model including only one or the other (Table S2).

There was also, as expected, some covariation between geographical

distance and environmental dissimilarity, but this was typically low

(Mean = 15.2%; Table 1). However, for three species (A. cooki, A.

distichus ignigularis and A. equestris), covariation between these variables

was fairly high (> 0.3), and these results should be interpreted with

caution. On average, IBD explained 36.3% of genetic divergence

(range = 3.0–79.6%; Table 1; Fig. 3), whereas IBE explained 17.9%

(range = 0.1–47.7%; Table 1; Fig. 3). We also identified the individ-

ual variables that contributed to making up the environmental

dissimilarity latent variable in each species (Table 1; Table S1).

Across islands, the average results were fairly consistent, except that

IBE actually contributed more than IBD in the species from

Hispaniola (0.173 ± 0.172 IBD vs. 0.226 ± 0.157 IBE), and IBE

contributed very little in any of the species from Jamaica

(0.510 ± 0.178 IBD vs. 0.004 ± 0.003 IBE). For species from Cuba

(0.543 ± 0.169 IBD vs. 0.158 ± 0.076 IBE) and Puerto Rico

(0.329 ± 0.146 IBD vs. 0.216 ± 0.154 IBE), IBD contributed 3.5

times and 1.5 times as much, respectively, as IBE to spatial genetic

divergence.

Method validation

In general, results from GDM and variation partitioning, both of

which have been recently described as powerful methods for study-

ing genetic divergence (Ferrier et al. 2007; Thomassen et al. 2010;

Legendre & Fortin 2010), were consistent with those inferred by

SEM (Table S3). In addition, as expected, when we used simple

topographic distances instead of resistance-based distances, the

contribution from geography was lower, but the effects of environ-

ment were virtually unchanged (Table S3). When we performed a

Figure 3 Proportions of spatial genetic divergence explained by isolation-

by-distance (red) and isolation-by-environment (blue) based on SEM analysis.

For each species, the height of the red bar is the proportion of genetic

divergence explained by geographical distance (IBD), the height of the blue bar

is the proportion explained by environmental dissimilarity (IBE) and the total

height of the bar is the total proportion explained by both together.
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PCA on the 24 environmental variables and entered the resulting

PC axes as environmental dissimilarity variables – instead of simul-

taneously estimating the factor loadings for each variable when solv-

ing the model – the contribution from IBE was slightly lower,

whereas the effects of IBD were basically the same (Table S3).

Finally, SEM analysis of mtDNA and nDNA data produced con-

cordant results in each case. For A. porcatus, analysis on nDNA data

independently resulted in estimates that were very similar to those

estimated from mtDNA alone for the strengths of IBD (67.3 vs.

77.6%) and IBE (8.8 vs. 5.7%) (Table 2). For A. allisoni and

A. chlorocyanus, we did not find sufficient variation in nDNA

sequences to permit convergence of the MLE during SEM analysis

of nDNA alone. However, the addition of nDNA to the mtDNA

data set resulted in only minor differences compared with mtDNA

alone (Table 2).

DISCUSSION

Structural equation modelling

Disentangling the effects of IBD and IBE has been a major chal-

lenge in identifying the processes that drive spatial genetic diver-

gence (Crispo et al. 2006; Thorpe et al. 2008; Wang & Summers

2010). We used a structural equation modelling approach to isolate

and quantify the relative strengths of these effects, highlighting the

importance of simultaneously considering the roles of both ecologi-

cal and geographical factors in driving biological diversification. For

most species, we found support for the hypothesis that both geog-

raphy and ecology contribute to spatial genetic divergence, but, on

average, IBD explained about twice as much genetic divergence as

IBE (mean 36.3 vs. 17.9%; Table 1; Fig. 3). In most cases, these

two factors together explained a large proportion of genetic varia-

tion (Fig. 3), suggesting that our SEM analysis captured the key

underlying processes. Hence, although several recent studies have

suggested a dominant role for IBE (e.g. Thorpe et al. 2008; Surget-

Groba et al. 2012), our results clearly show that IBD still plays a

key role in the evolution of spatial divergence.

There are, however, exceptions to this trend. IBE actually con-

tributed more than IBD for four Hispaniolan taxa (A. chlorocyanus,

A. distichus domincensis, A. distichus ignigularis and A. whitemani) and

one Puerto Rican species (A. cristatellus). Meanwhile, for three Jamai-

can species (A. garmani, A. grahami and A. lineatopus), IBE played a

very minor role, explaining an average of 0.4% of genetic diver-

gence. The reasons for these differences are unclear. On one hand,

overall environmental heterogeneity (variation averaged across all

environmental variables after standardisation) was greatest on His-

paniola, and Hispaniola had the highest average contribution from

environmental dissimilarity (22.6%), but on the other, environmental

heterogeneity was not significantly different between the remaining

three islands. Variation in environmental variables among sampling

localities for each species was also not significantly different

between Cuba, Jamaica and Puerto Rico, suggesting that the low

contributions from IBE were not simply due to low levels of envi-

ronmental variation.

In general, the results for each species within islands, except for

Hispaniola, were fairly consistent, suggesting that closely related

species have similar evolutionary responses to a particular land-

scape. We also found, though, that results were broadly consistent

across islands as well, suggesting that how organisms interact with

their environments and the underlying features of the landscape

both play important roles. On average, and for 11 of 12 species

on three of the four islands (Cuba, Jamaica, and Puerto Rico),

IBD played a greater role than IBE. This result joins several

recent studies in suggesting that the ubiquity of IBE may be over-

emphasised and that the important drivers of genetic divergence

may vary substantially across different organisms (Crispo et al.

2006; Hendry 2009). In fact, in many cases, both factors may con-

tribute to some extent to spatial genetic divergence (Lee & Mitch-

ell-Olds 2011).

For those species for which IBE played a significant role, simulta-

neously estimating the contribution of each environmental GIS layer

in the SEM allowed us to assess the degree to which individual

environmental variables contributed to these results (Table 1; Table

S1). Spatial variation in adaptations to thermal environment has

been shown in some Anolis lizards (Hertz & Huey 1981), but mor-

phological and genetic variation within some species seem to be

more closely tied with spatial variation in precipitation or vegetation

(Thorpe 2002; Calsbeek et al. 2006; Thorpe et al. 2008). For most

species in our study, temperature variables played the biggest part in

describing the environmental dissimilarity latent variable, but precip-

itation variables contribute significantly to environmental dissimilar-

ity in eight species. Understanding how individual environmental

variables can produce adaptive differences that lead to IBE remains

a major challenge (Coyne & Orr 2004; Sobel et al. 2010), and our

results demonstrate that doing so can contribute substantially to

understanding the evolution of spatial genetic divergence.

Table 2 Results of structural equation modelling (SEM) analyses that included nuclear DNA sequence data (nDNA). Data used include the number of localities (Loc.)

and the number (Seq.) and length in base pairs (bp) of DNA sequences. For each species, SEM was used to quantify the proportion of genetic divergence explained by

isolation-by-distance (IBD) and isolation-by-environment (IBE), presented as maximum-likelihood estimates ± standard errors. Also listed are the primary contributors

(Contrib. vars.) to the environmental dissimilarity latent variable (individual factor loading coefficients > 0.7). Results of analyses on mtDNA data alone are included for

comparison

Study system Data Results

Species Marker Loc. Seq. bp IBD IBE Total Contrib. vars.

Anolis allisoni mtDNA 14 62 1173 0.448 ± 0.086 0.229 ± 0.091 0.677 Precip.

mtDNA + nDNA 14 21 1674 0.437 ± 0.093 0.254 ± 0.116 0.691 Precip.

Anolis chlorocyanus mtDNA 5 14 1504 0.028 ± 0.048 0.172 ± 0.110 0.200 Precip.

mtDNA + nDNA 5 6 3266 0.056 ± 0.041 0.203 ± 0.125 0.259 Precip.

Anolis porcatus mtDNA 15 41 1173 0.776 ± 0.067 0.057 ± 0.036 0.833 Precip.

mtDNA + nDNA 15 26 2847 0.765 ± 0.078 0.064 ± 0.031 0.839 Precip.

nDNA 15 26 1674 0.673 ± 0.180 0.088 ± 0.065 0.841 Precip.
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Method validation

All three approaches we used to validate our novel SEM methodol-

ogy produced results consistent with those from our method, con-

firming the robustness of our approach to different assumptions and

sources of data. In each case, the slight differences we observed are

in line with the differences expected based on previous studies of

genetic divergence (McRae & Beier 2007; Wang et al. 2009). Our vali-

dation results also showed consistency between the results drawn

from mtDNA data sets and those including nDNA data. So, we have

some evidence that the inferences drawn from our mtDNA data sets

should be good representations of the results from overall genetic

variation. In any case, although there are potential drawbacks for

using mtDNA-only data sets (or any single gene data set) for some

analytical goals, these typically pertain to methods like phylogenetic

inference, in which any single gene tree may present an ‘incorrect’

view of population history due to the random nature of lineage sort-

ing. For this study, we used mtDNA sequences as indicators of pop-

ulation genetic structure and genetic divergence, rather than for

inferring phylogenetic history, and these data should be robust for

these purposes because mtDNA are known to be sensitive indicators

of population structure (Zink & Barrowclough 2008; Karl et al.

2012). In addition, simulations have shown that unlinked neutral loci

can consistently detect IBE when divergent selection between envi-

ronments is strong and dispersal is intermediate (Thibert-Plante &

Hendry 2010). We do not measure either selection or dispersal

directly in this study, but previous work has shown that divergent

selection on Anolis lizards can be strong (Calsbeek & Irschick 2007),

and FST estimates from some species suggest moderate levels of

dispersal (Ng & Glor 2011; Surget-Groba et al. 2012). Thus, because

they typically provide more variable sites than nDNA sequences,

mtDNA sequence data continue to be valuable for estimating popu-

lation structure and relative levels of genetic divergence among popu-

lations (Zink & Barrowclough 2008), and for the conditions typical

in Anolis lizards, they should also be reliable for detecting IBE. In

any case, the SEM method we describe could easily be applied to

many additional forms of genetic data, including microsatellite, SNP

or genomic datasets, and future studies using these data should illu-

minate the factors influencing spatial genetic divergence even further.

While for this study, we examined patterns of gene flow through

neutral genetic divergence, our approach could also easily be

extended to examining variation in genes potentially under selection.

Studies examining many genetic loci could look for outliers that

have a significantly different signal from the background pattern of

loci from across the genome. Those linked to genes under selection

might be expected to exhibit greater degrees of ecological isolation

because of divergent selection in different environments. Likewise,

populations in similar environments should have less divergence in

genes under selection than in neutral genes. Close examinations of

the environmental variables contributing to these effects could

prove especially valuable for linking the genes under selection to

specific environmental forces of selection, and should provide

insights into the geographical and ecological factors that contribute

to adaptive genetic divergence.

CONCLUSIONS

Our results provide strong evidence that both IBD and IBE con-

tributed to the evolution of spatial genetic divergence in the adap-

tive radiations of Anolis lizards on the Greater Antilles. IBD, in

which physical distance and barriers reduce gene flow between

populations, played the strongest role. IBE, in which adaptive dif-

ferences or natural selection against dispersers limit gene flow

between divergent habitats, played a secondary role. Experimental

evidence has shown that anoles avoid microhabitats in which they

have reduced performance (Irschick & Losos 1999; Calsbeek &

Irschick 2007), and our results suggest that the same phenomenon

may also occur among environmentally distinct macrohabitats.

Overall, these results show that understanding the evolution

of spatial genetic variation requires examining both ways in

which ecological landscapes influence patterns of gene flow among

populations.
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