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 One of the most promising recent advances in biogeography has been the increased interest and understanding of species 
distribution models  –  estimates of the probability that a species is present given environmental data. Unfortunately, such 
analyses ignore many aspects of ecology, and so are diffi  cult to interpret. In particular, we know that species interactions 
have a profound infl uence on distributions, but it is not usually possible to incorporate this knowledge into species dis-
tribution models. What is needed is a rigorous understanding of how unmeasured biotic interactions aff ect the inferences 
generated by species distribution models. To fi ll this gap, we develop a general mathematical approach that uses probability 
theory to determine how unmeasured biotic interactions aff ect inferences from species distribution models. Using this 
approach, we reanalyze one of the most important classes of mechanistic models of competition: models of consumer 
resource dynamics. We determine how measurements of one aspect of the environment  –  a single environmental vari-
able  –  can be used to estimate the probability that an environment is suitable with species distribution models. We show 
that species distribution models, which ignore numerous facets of consumer resource dynamics such as the presence of a 
competitor or the dynamics of depletable resources, can furnish useful predictions for the probability that an environment 
is suitable in some circumstances. Th ese results provide a rigorous link between complex mechanistic models of species 
interactions and species distribution models. In so doing they demonstrate that unmeasured biotic interactions can have 
strong and counterintuitive consequences on species distribution models.   

 One of the most promising recent advances in ecological 
methods is the development of species distribution mod-
els (SDMs) (Peterson et al. 1999, Elith et al. 2006). Th ese 
methods combine easily obtained data with sophisticated 
statistical methods to estimate the probability that an organ-
ism will be found in a given set of environments or loca-
tions. Despite their promise, the interpretation of SDMs is 
fraught with conceptual ambiguity (Soberon and Peterson 
2005, Kearney 2006). A rich array of research has demon-
strated that species distributions represent a complex amal-
gam of factors, including history, dispersal, environmental 
conditions and interactions with other organisms (Brown 
et al. 1996). However, SDMs, as currently implemented, 
model only a tiny subset of these factors. As a consequence, 
most empirical descriptions of species distributions omit 
important ecological details. What is needed is a rigorous 
conceptual understanding of how unmeasured facets of ecol-
ogy aff ect the inferences of distribution models (Holt 2009, 
Soberon and Nakamura 2009, Godsoe 2010a). 

 Perhaps the most substantial omission from current 
SDMs are biotic interactions among species (Pulliam 2000, 
Soberon and Peterson 2005, Araujo and Guisan 2006). It 
has long been known that the distribution of one species can 
depend on interactions with other species through competi-
tion, predation, mutualism, and commensalism. But each of 
these processes can be diffi  cult to measure and parameterize

at the landscape scale. Given this problem, we need an 
intuitive understanding of how biotic interactions shape our 
ability to make statistical inferences with distribution data. 

 In response to this problem, several authors have proposed 
verbal models of how biotic interactions shape SDMs. Some 
authors have argued that most biotic interactions occur over 
small scales (10s to 100s of meters), while abiotic factors 
vary over a much broader scales (Pearson and Dawson 2003, 
Soberon 2007, Soberon and Nakamura 2009, Gotelli et al. 
2010). As such, SDMs at large scales represent the eff ect of 
the abiotic environment on a species. 

 However, several lines of evidence suggest that biotic 
interactions might matter at larger scales. For example, 
ecological theory predicts that biotic interactions can pro-
duce abrupt range limits between species (Case et al. 2005) 
Concordantly, evolutionary biologists have documented 
numerous examples of sister species with parapatric distri-
butions, where one closely related species excludes another 
from large areas of otherwise suitable habitat (Jordan 1905, 
Coyne and Orr 2004). 

 Alternatively, SDMs may be interpreted as little more 
than a model of the environments in which a species is 
found (the realized niche Kearney 2006, Jim é nez-Valverde 
et al. 2008). As such, they provide little reliable information 
about the environments that are suitable to a species  –  that is, 
where it could be found. One can then use other information 
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(from experimental studies, for example) to understand the 
set of environments that are potentially suitable to an organ-
ism (the fundamental niche) and, from this, make conclu-
sions about the role of biotic interactions. Th e hypothesis 
that SDMs are less reliable than inferences derived from an 
experimental or mechanistic understanding of ecology is, at
best, incomplete. Small-scale mechanistic studies can fail to 
reproduce processes that are important at larger scales. For 
example, small-scale experimental work in the 1960s indi-
cated that carbon was the limiting nutrient responsible for 
blooms of blue green algae (Lange 1967). Subsequent analy-
ses demonstrated that, at large scales, carbon limitation did 
not produce blooms (Schindler 1971, Peters 1991). As a con-
sequence, mechanistic models sometimes produce less reli-
able inferences than correlative models (Buckley et al. 2010). 

 A promising compromise position is that SDMs provide 
information on whether an environment is suitable to a spe-
cies (Booth et al. 1988, Peterson et al. 1999, Phillips et al. 
2006). Recent theoretical work formalizes this idea by showing 
analytically that SDMs can estimate the probability that an 
environment is a part of the niche (Soberon and Nakamura 
2009, Godsoe 2010a). Unfortunately, this approach relies 
explicitly on a model of niches as sets of environments that 
are suitable to an organism (Hutchinson 1957). Th ese proofs 
do not yet consider how the mechanisms by which organisms 
interact with one another shape the statistical inferences we 
derive from SDMs (Tilman 1977, 1982, Chase and Leibold 
2003). We resolve this problem by extending the approach
developed by Godsoe (2010a) to reanalyze mechanistic 
models of competition. To do this, we re-translate mod-
els of consumer resource dynamics (hereafter CR models) 
(MacArthur 1972, Chase and Leibold 2003) into the con-
ditional probability that a species is present given complete 
knowledge of the environment. We then use this function 
to understand our ability to make predictions using limited 
knowledge of the environment by deriving the marginal 
probability that a species is present. Using this approach, we 
can analyze the consequences of omitting biotic interactions 
in SDMs. We illustrate this approach using models of com-
petition for resources, although our results could be extended 
to other types of interactions, such as mutualisms or predation 
(Chase and Leibold 2003, Holland and DeAngelis 2010). 

 We focus our analyses on two distinct questions: 1) can
we model the probability that an environment will be 
suitable for a given species using incomplete information 
about resources? 2) How do interactions between competi-
tors infl uence the probability of presence estimated using 
information on the abiotic environment? Our results dem-
onstrate that unmeasured biotic interactions have counter-
intuive eff ects, even in some of the best-known models of 
competition. As such, explicit mathematical analyses are 
needed to understand how biotic interactions shape SDMs.  

 The model 

 We focus on competition mediated by CR dynamics as 
such models have been analyzed for several decades and are 
well understood (MacArthur and Levins 1964, MacArthur 
1972, Tilman 1977, 1980, 1982, Abrams 1988, Chase and 
Leibold 2003). CR models are mechanistic, with interactions 

between species being governed by the ability of each species 
to deplete resources. As a result of these mechanistic details, 
CR models are easier to interpret than more phenomeno-
logical approaches, such as Lotka – Volterra models of compe-
tition (Tilman 1980, Chase and Leibold 2003). 

 Here, we model the abundance of species  i  using the 
diff erential equation: 

dNi
dt

� Ni(fi1ai1R1 � fi2ai2R2 � di)
 

 (1)

 

 where  N  i  denotes the abundance of species  i . We will focus 
on a two species model such that  i  Î   1 ,  2. Each species 
increases in abundance as it consumes resources  R  1  and  R  2 . 
A resource in such a model is a facet of the environment that 
increases the population growth rate of a species and that 
is consumed by a population of organisms (Tilman 1980). 
One commonly cited class of resources is nutrients, such as 
nitrogen, phosphorous and silicon. In aquatic systems, such 
resources are often measured as the amount of a resource 
in micro-moles per volume of water in liters  mM  (Tilman 
1977). However, this defi nition of resources is suffi  ciently 
broad to apply to environmental variables as diverse as water 
or sunlight in other circumstances. As such, there is no 
common unit for all possible resources. Th e rate at which 
N i  increases depends on the per-capita feeding rate of spe-
cies  i  on resource  j, fi j and the ability of species  i  to convert 
this feeding into population growth,  a  ij  .  In turn, population 
growth is off -set by a per-capita loss (death) term,  di.  

 Th e abundance of each resource  Rj  depends on additional 
diff erential equations where  j  Î 1 ,  2: 

dRj

dt
� c(Sj � Rj) �

2

i � 1
fijNiRj

  

(2)

 

 Feeding by species  i  decreases the abundance of resource  j  
(the term  fijNiRj).  However, each resource is replenished
through the resource turnover term  c(Sj � Rj)  at the rate  c  from 
a supply pool in which the abundance of the resource is  Sj.  
As a result, in the absence of consumers, the equilibrium 
concentration of  Rj  approaches  Sj.  A somewhat contrived 
example of a system undergoing such dynamics would be a 
lake into which a solution with a concentration  Sj  of nutri-
ents is added at rate  c . Th e greater the diff erence between the 
concentration of resources in the lake and the concentration 
of resources in the solution, the faster the concentration of 
resources in the lake increases (hence the  S  j �   R  j  term). For 
convenience, we scale resource supply rates between a mini-
mum value of 0 and a maximum of 1. Following Tilman 
(1980), we assume a common resource turnover rate but dis-
tinct supply pool for each resource. 

 Assuming that the amount of resources consumed by 
each species does not change substantially with a change 
in the availability of each resource, this model has fi ve pos-
sible outcomes at equilibrium (Tilman 1980): 1) the supply
of resources is insuffi  cient to allow either species to persist, 
2) species 1 and 2 coexist stably, 3) one species may exclude 
the other but the victor depends on initial conditions, 4) spe-
cies 1 will exclude species 2 and exist alone regardless of ini-
tial conditions, 5) species 2 will exclude species 1, regardless 
of initial conditions. 
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 In any one location, the model behavior at equilibrium 
depends on the supply of both resources (Fig. 1). Neither 
species can be present (outcome 1) if the supply of resources 
is insuffi  cient. Following existing terminology, we defi ne the 
Zero Net Growth Isocline for species  i  (hereafter  ZNGI  i ) 
as the line that demarcates environments with suffi  cient 
resources for species  i  to survive from environments in which 
this species is unable to survive. We will focus subsequent 
analyses on the species with the steepest  ZNGI , hereafter spe-
cies 1. Other model outcomes depend on two lines, here-
after  L  1  and  L  2  which describe how each species consumes 
resources. Th ese lines pass through the point of intersection 
of the  ZNGI   ’ s of the two species ( S  1,intersection ,  S  2,intersection ) and 
have a slopes of  f  i2  S  2,intersection / f  i1  S  1,intersection .  L  1  and  L  2  run par-
allel to the ‘impact vector’, which describes the impact of 
consumers on a given concentration of resources ( I  1  and  I  2  
on Fig. 1). If  L  1  has a shallower slope than  L  2 , then species 1 
consumes proportionately more of  R  1 . When this is true, the 
two species coexist stably (outcome 2) so long as the supply 
of resources is in the region between  L  1  and  L  2 . Conversely, 
when  L  2  is shallower than  L  1 , the victor in environments 
between  L  1  and  L  2  depends on initial conditions (outcome 
3). In environments above  ZNGI  1  but below  L  1  and  L  2 , 
only species 1 is present (outcome 4), and in environments 
above  ZNGI  2  and above  L  1  and  L  2 , only species 2 is present 
(outcome 5). Tilman (1980) provides a formal derivation of 
these ideas through a linear stability analysis. 

 If we assume that the supply for each resource is equally 
likely in our landscape (uniformly distributed over an inter-
val), then the proportion of environments in a particular 
region of a consumer resource plots is equal to the propor-
tion of environments in our study region that have those 

environmental conditions. So for example, if 50% of the 
environments in our graph have supply points that could 
support coexistence, then 50% of the environments in our 
region can potentially support coexistence as well. As we 
shall see, this facilitates a simple graphical interpretation of 
probabilistic inferences in consumer resource models. 

 Next, we must model how local and regional community 
dynamics interact. To facilitate our graphical approach, we 
assume that each species is present if and only if the spe-
cies would be present at equilibrium (Tilman 1982, Abrams 
1988, Tilman and Pacala 1993, Chase and Leibold 2003, 
Holt et al. 2005 but see Abrams and Wilson 2004, Ryabov 
and Blasius 2011). Th is is akin to assuming that dynamics 
within a given location equilibrates much more quickly than 
dynamics between locations (i.e. local ecological interactions 
occur much more quickly than dispersal between patches). 
We also assume that researchers only sample presences and 
absences from environments to which both species can dis-
perse (Soberon 2007). With this set of assumptions, the 
probability that a species is present is identical to the prob-
ability that an environment is suitable to that species. When 
two taxa can disperse to dramatically diff erent environments, 
it is possible for models to confl ate diff erences in suitable 
environments with diff erences in available environments 
(Elith and Graham 2009, Godsoe 2010b). 

 We analyze our ability to model the probability that an 
environment is suitable using an environmental variable in 
two scenarios: 1) what is the probability that an environment 
is suitable in the absence of a competitor? 2) What is the 
probability that an environment is suitable with a competitor?

To compare our results to empirical studies of species 
distributions and previous representations of CR models, 
we then measure our ability to fi t SDMs. We sample 200 
environments from which we measure a single environmen-
tal variable and the presence/absence of species 1, then fi t a 
SDM using a generalized linear model (GLM) with a bino-
mial link function. GLM serves a familiar and convenient 
method for comparing our analytic results to SDMs, par-
ticularly as some of the most sophisticated SDM algorithms, 
such as Boosted Regression Trees, represent extensions of 
GLM (Friedman et al. 2000, Elith et al. 2006, 2008). We 
estimate the accuracy of our SDMs by calculating Area 
Under the receiver operating Curve (AUC). Th is statistic is 
a non-parametric estimate of a models ’  ability to distinguish 
presences from absences. It ranges from zero to one with 
a score of 1 representing a nearly perfect ability to distin-
guish between presences and absences. It should be noted 
that this procedure could also be applied to  ZNGI s that 
are non linear, say if resources are essential (Tilman 1980).  

 1) The probability that an environment is suitable 
in the absence of a competitor 

 In the absence of a competitor our focal species can persist 
in environments above its zero net growth isocline. Th is 
mathematical observation can be used to generate the 
conditional probability that a species is present using only 
information on the resource supply points. If set of supply 
points are above the  ZNGI1,  species 1 will be present, such 
that the conditional probability of presence is 1. Species 1 is 
absent otherwise, making the probability of presence equal 
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Figure 1.      ZNGI  plot including points and lines used to calculate 
the probability of presence with competition. In this fi gure, blue 
represents environments suitable to species 1, red represents envi-
ronments suitable to species 2, purple represents environments 
suitable to both species and white represents environments unsuit-
able to both. Th is plot is an illustration of stable coexistence since 
 I  1  is shallower than  I  2  such that species 1 has a greater eff ect on 
resource 1.  
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distributed over the interval (0,1), both  f  S l
    ,S  2

  (s  1  , s  2 )  and f S l
  ( s 1) 

will change. In Supplementary material Appendix 3, we 
simulate SDMs for the competition model that we pres-
ent below using variables that are correlated, exponentially 
distributed, or uniformly distributed over an interval other 
than (0,1). 

 Using independent, uniformly distributed supply points 
facilitates a simple graphical interpretation of our model. 
Figure 2 presents a consumer resource diagram. To derive 
the probability of presence given measurements of  S  1  ,  start 
by considering a given supply point of  S  1  ,  say environments 
where  S 1  �  0. Th e probability an environment will be suit-
able given  S  1   �  0 is the proportion of environments where 
 S  1   �  0 that are above  ZNGI  1 . Graphically, this is a matter of 
drawing a vertical line at  S  1   �  0 and measuring the portion 
of this line where  S  2  is suffi  ciently high to allow our spe-
cies to persist. To develop the marginal probability, we must 
extend this calculation through all possible supply points
of  S  1 . Figure 2B illustrates the marginal probability of 
presence (black). In this fi gure, environments with high 
 S  1  values invariably support presences. Environments with 
lower resource supply points sometimes support species 1. 

 A correlative SDM using only information on  S  1  fi t to 
the simulated data set in Fig. 2 closely matches the marginal 
probability of presence and produces strong predictions, 
with an AUC score of 0.93 (blue dotted line Fig. 2B).   

2)  The probability that an environment is 
suitable given the presence of a competitor 

 When a competitor (species 2) is present, it will be able to 
exclude species 1 from some environments. To calculate the 
probability that an environment is suitable when coexistence 
is stable, we start with the probability of presence given 
the supply of both resources: 

P(X � 1 | S1 � s1, S2 � s2) �

1 if (S1, S2) � ZNGI1 and

Species2 does not exclude Species1

0 otherwise

 Graphically, we can obtain the marginal probability of 
presence by considering the proportion of the plot in Fig. 3A 
where species 1 is present at each possible value of  S  1.  
Appendix 2 provides a formal derivation of the marginal 
probability of presence in this model as: 

P(X � 1 | S1 � s1) �

1 if S1,intercept � S1

0 if S1 � S1,intersection

h(S1) if S1,maxS2 � S1 � S1,intercept

g(S1) � h(S1) if S1,intersection � S1 � S1,maxS2

(6)  

 where: 

g(S1) � S1 � 
f22(f21a21d1 � f11a11d2)

f21(f12a12d2 � f22a22d1)

(f21 �  f22)(a11d2f11 � a21d1f21)

f21(a11a22f11f22 � a12a21f12f21)

 Th is function describes the probability of presence based on 
a few points on the  S  1  axis (Fig. 1).  S  1,intersection  represents 
the intersection of the  ZNGI s for species 1 and species 2. 

to zero). Mathematically, the probability that an observa-
tion  X  represents a presence ( X   �  1), given that the supply of 
resource  j  in an environment is  sj  is the following: 

P(X � 1 | S1 � s1, S2 � s2) �

1 if  (S1, S2) � ZNGI1

0 otherwise
 

 (3)

 
 To obtain the equation for  ZNGI1,  set  dN1/dt   �  0 in 
Eq. (1), then fi nd the solution for the non-trivial equilib-
rium by solving    fi1ai1R1   �   fi2ai2R2   � di  �  0.  Re-arranging this 
solution, substituting it into Eq. (3), and substituting in the 
supply pool of each resource gives us: 

  

P(X � 1 | S1 � s1, S2 � s2) �
1

0 otherwise

if S2 �
d1

f12a12
�

f11a11

f12a12

(4)

   With this function, we may determine our ability to make 
predictions using only incomplete information, say if we 
could only measure  S 1. Mathematically, this is a matter of 
using the probability of presence conditioned on measure-
ments of  S1  , S  2  to derive the marginal probability that an 
environment is suitable, conditioned on a measurement of 
 S 1 (Ross 1997). Th is is given by: 

1
0P(X � 1 | S1 � s1) �

f s1(s1)

P(X � 1 | S1 � s1, S2 � s2)fS1,S2 (s1, s2)dS2

 where  f   S l
    (sl )  is the probability for observing a particular 

value of  S l, and  fS l
  ,S2

    (s1, s  2  )  is the joint probability of observ-
ing a given set of values for  S 1 and  S  2 . In the absence of 
any other information, we assume that  S 1 and  S  2  are inde-
pendent and uniformly distributed over (0,1), fS l

  ( s l)  �    
f S l      ,S  2  

(s1, s2    )  �   1. Th is premise is equivalent to assuming we 
are equally likely to observe any combination of resource 
supply points. It also simplifi es the mathematical problem 
of calculating the probability of presence to one of integrat-
ing out the eff ect of  S  2 . Appendix 1 provides the formal deri-
vation as for this probability as: 

P(X � 1 | S1 � s1) �

1 if 1� h(S1)

h(S1) if 0 � h(S1) � 1

0 if h(S1) � 0
  

(5)

 

 where 

h(S1) � 1 � 

f 12a12

f11a11

f 12a12

d1
S1 �

 After noting that 0  �   P(X  �  1 � S  1    �  s  1  )  �  1.  Th e mechan-
ics of computing the probability of presence for other dis-
tributions of the supply points of resources  –  say normal 
or exponential  –  are well developed (Ross 1997) and simi-
lar to those we have presented here. So for example, if  S 1 
and  S  2  are non-independent, or  S  2  has some distribu-
tion other than uniform over (0,1), the joint density func-
tion   f   S l

    ,S  2  
(s  1  , s  2 )    changes. Similarly, if  S  1  is non-uniformly 
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 Figure 2.     A graphical interpretation of the probability that a species 
will be present in an environment given the supply point of resource 
1. Panel (A) highlights areas above the  ZNGI  1  (blue). Unsuitable 
environments (below the  ZNGI  ) are white. Dots represent a sample 
of two hundred environments including absences (black) and pres-
ences (white). Panel (B) indicates the marginal probability of pres-
ence conditioned on supply points for species two (black line). Th e 
blue dotted line represents an estimate of the probability of pres-
ences from a GLM using the observed presence/absence data dis-
played in panel (A). Th is plot uses the following parameter values: 
 a  11   �  0 . 1,  a  12   �  0 . 021,  f  11   �  0 . 0047,  f  12   �  0 . 016329,  d  1   �  0 . 00034. 
AUC score 0.900.  

 S  1,maxS2 
 represents the point where a line collinear with the 

depletion vector for species 1 reaches the maximum pos-
sible supply for  S  2 .  S  1,intercept  is the point where the  ZNGI  
for species 1 intersects the  S  1  axis.  h ( S  1 ) is the proportion 
of environments above the  ZNGI  for species 1 at each value 
of  S  1 , and  g ( S  1 ) is the proportion of environments below a 
line along the depletion vector for species 1. For simplicity, 
we present results assuming that  S  1,maxS2

    �  S  1,intersection . 
We present a slightly modifi ed version of this function in 
Appendix 2 assuming  S  1,intersection    �  S  1,maxS2 

. A GLM pre-
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 Figure 3.     A graphical interpretation for the probability a species 
will be present given the supply point for resource 1 and assuming 
that our focal species interacts with a competitor. In panel (A), 
species 1 will be present in environments where it coexists with 
its competitor (purple), or environments where it is competitively 
dominant (blue). It is absent from environments where it loses to 
its competitor (red), or environments with insuffi  cient resources for 
either species (white). Dots represent a sample of two hundred 
environments including absences (black) and presences (white). 
Panel (B) shows the marginal probability of presence conditioned 
on  S  1  (black line), along with the probability of presence estimated 
from a GLM fi t using the presence/absence observations portrayed 
in panel (A). Th is plot uses the following parameter values: 
 a  11   �  0 . 2,  a  12   �  0 . 5,  a  21   �  0 . 4,  a  22   �  0 . 2,  f  11   �  0 . 25,  f  12   �  0 . 07, 
 f  21   �  0 . 025,  f  22   �  0 . 07,  d  1   �  0 . 035,  d  2   �  0 . 0095.  

dicting the probability of presence given  s  1  values from the 
simulation results presented Fig. 3 produces exceptionally 
strong predictions, with an AUC score of 0.99. 

 Figure 4 illustrates the consequences unstable coexistence. 
Panels A, B and C simulate the dynamics of 100 locations 
for 100 000 yr assuming identical feeding rates, conversion 
effi  ciency, death rates, resource parameters and the initial 
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abundance of species 2. Th e only diff erence between each 
panel is the initial abundance of species 1. In panel A the ini-
tial abundance of species 1 is 0.01, equal to the abundance of 
species 2. In this scenario, species 1 excludes species 2 from 
most of the environments between  L  1  and  L  2 . In panel B, 
species 1 is initially half as abundant as species 2. As a result, 
species 2 excludes species 1 for some environments between 
the two lines. In panel C, species 1 is initially one tenth 
as abundant as species 2. As a result, species 2 frequently 
excludes species 1. In Fig. 4D, we illustrate GLM models fi t 
to each of these three scenarios. Th e AUC scores associated 
with these models varied from 0.914 to 0.985. Figure 4A 
produced the highest score.    

 Discussion 

 Our research goal is to understand how unmeasured biotic 
interactions aff ect SDMs. We have both a general response 
to this problem and specifi c observations from models of 
CR dynamics. SDMs use information on the environ-
ment to predict where a species is present. For many SDM 
algorithms, this process can be formalized in the following 
way  –  the methods estimate the probability of presence 
conditioned measurements of the environment. Unmea-
sured biotic interactions aff ect SDMs by altering this condi-
tional probability. We can calculate the eff ect of unmeasured 
interactions using tools from probability theory. When 
we apply this general approach to CR models, we obtain 
counter-intuitive results: unmeasured biotic interactions 
can improve our ability to make predictions using SDMs. 
Th e ecology of biotic interactions is a vast topic, and no 
single set of models can refl ect this topic in its entirety. 
Our point is that we need explicit theory to study specifi c 
questions about the role of biotic interactions, and that 
when we apply this theory to existing models, it is easy 
to fi nd cases where biotic interactions have substantial and 
counter-intuitive eff ects. 

 We return to the questions that guided our research. 
First, we asked: can we model the probability that an envi-
ronment will be suitable for a given species using incomplete 
information about resource dynamics? Our mathemati-
cal results, including analytic formulae, show that we can, 
in fact, do this. Even using relatively complex consumer-
resource models, the presence of species 1 in certain loca-
tions and measurements of only one resource can be used 
to produce useful predictions. 

 We also asked how complex interactions between competi-
tors shape species distributions. It is easy to show that, con-
trary to some suggestions in the literature, species ranges can 
be shaped by biotic interactions in CR models. As with other 
consumer resource models, competition can easily exclude an 
organism from some local environments. At a regional scale, 
some environments have a suffi  ciently large supply of resources 
to allow the persistence of species 1 on its own, but are unsuit-
able to species 1 in the face of a competitor. As a result, compe-
tition changes the relationship between resource measurements 
and the probability that an environment is suitable. 

 Given this information, we may develop a graphical
understanding of one of the most vexing problems for 
interpreting SDMs  –  whether correlative models provide 
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Figure 4.     An example of how unstable coexistence can alter the 
outcome of SDMs. Panels (A–C) use identical parameter values 
with one exception, the initial abundance of species 1 which in (A) 
is equal to that of species 2, in (B) is one half the abundance of spe-
cies 2 and in (C) is one tenth the abundance of species 2. In large 
sections of the plot the outcome of the model is similar to that in 
Fig. 3, however in the region between  L  1  and  L  2  (brown) the out-
come of competition changes with initial conditions. As the initial 
abundance of species 1 decreases it becomes less able to outcompete 
species 2 in environments with high values of  S  2 . As a result species 
1 is nearly always present in (A) and nearly always absent in (C). 
Decreasing the initial abundance of species 1 thus weakens our abil-
ity to use  S  1  to predict the presence of species 1. (D) Plots SDMs fi t 
to each panel which produce slightly diff erent predictions and have 
diff erent AUC scores A  �  0.985, B  �  0.924, C  �  0.914. Th is 
plot uses the following parameter values:  a  11   �  0 . 1,  a  12   �  0 . 02, 
 a  21   �  0 . 15,  a  22   �  0 . 4,  f  11   �  0 . 1,  f  12   �  0 . 3,  f  21   �  0 . 3,  f  22   �  0 . 1, 
 d  1   �  0 . 007,  d  2   �  0 . 037, initial conditions:  N  2   �  0.01,  R  1   �   S  1 ,  R  2   �   S  2 .  
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Core Team 2009). In many of these simulations, SDMs fi t 
from data generated in the presence of biotic interactions 
are signifi cantly diff erent from SDMs fi t from data gener-
ated in the absence of biotic interactions. Moreover, biotic 
interactions have the potential to both increase and decrease 
the AUC score derived from an SDM. Th e simplest way to 
encapsulate these results is to consider the conditions under 
which information on  S  1  is most informative for predicting 
the probability of presence for species 1. When the probabil-
ity of presence changes gradually with changes in  S  1 , then 
AUC scores are relatively low as is the case in Fig. 2. Under 
these parameter values, the presence of a competitor excludes 
species 1 from environments with low values for  S  1  Fig. 3. As 
a result, the AUC score is higher for models fi t to data in the 
presence of a competitor. Conversely, in the largest parameter 
value tested for  a  22  in Supplementary material Appendix 3 
species 2, excludes species 1 from environments with all but 
the lowest concentration of  S  2 . Th e probability of presence 
changes little with values of  S  1  in this scenario and as a result 
the presence of a competitor lowers AUC scores. 

 Th ese conclusions must be tempered with caution 
because we have used a relatively simple framework to 
model the interactions between local environments and the 
landscape as a whole. Notably, we have assumed that eco-
logical dynamics within patches equilibrate rapidly relative 
to dispersal between patches. It is, of course, possible that 
more complex dispersal mechanisms may degrade our abil-
ity to make predictions. A full treatment of this problem is 
beyond the scope of this paper. However, previous analyses 
of the interaction between dispersal and CR dynamics 
provide an outline of what we may expect to fi nd. Abrams 
and Wilson (2004) analyze a two patch model with two 
competing species that migrate from one patch to another. 
As the level of dispersal approaches zero in Abrams and 
Wilson (2004), only the species with the lower resource 
requirement persists in either patch. In other words, in the 
limit of low dispersal, a species can only be present in an 
environments that are suitable and in which the species pos-
ses a competitive advantage. Th is result does not hold across 
all values of migration. Specifi cally, a species with higher 
resource requirements but a low rate of dispersal can out-
compete a species with lower resource requirements and 
a high rate of dispersal. If we were to fi t an SDM naively 
under such a scenario, we would erroneously infer that 
environments are most suitable to one species, when in fact 
that species only persists because it loses fewer individuals to 
migration into unsuitable patches. 

 Similarly, it is possible that one or both species are unable 
to disperse to some patches. If our focal species cannot dis-
perse, this will lead to erroneusly exaggerating the number 
of unsuitable environments. Conversely, if the other species 
cannot disperse to all patches, it is possible that our focal spe-
cies will be present in environments that would be unsuit-
able in the face of competition. 

 We have assumed that the only thing to change from one 
location to another is the supply of resources. Th is omits 
other sources of uncertainty, say if the the  ZNGI s changed 
from location to location due to other unmeasured facets 
of the environment. In addition, theory on multiple spe-
cies that consume three or more essential resources indi-
cates that complex dynamics are possible in larger ecological 

information on the fundamental or realized niche. Th e 
example developed in Eq. 5 and Fig. 2 can be thought of 
as an estimate of the probability that an environment is a 
part of the fundamental niche of species 1, given data on the 
environment. Authors have argued that this is what we must 
learn to garner information on species distributions (Kearney
2006, Jim é nez-Valverde et al. 2008). Others argue that cor-
relative SDMs provide information on fundamental niche 
(Soberon and Peterson 2005, Soberon 2007). However, 
the marginal probability that an environment is a part of 
the fundamental niche is distinct from the probability that 
an environment is potentially suitable given unmeasured 
competition, as in Eq. 6 and Fig. 3. As a result, SDMs 
using data on the abiotic environment cannot typically be 
interpreted as estimates of the fundamental niche. Indeed 
if competitive exclusion is common, then we should not 
expect models of the probability that an environment is a 
part of the fundamental niche to off er the best predictions of 
the environments that are suitable. 

 Counter-intuitively, in Fig. 3 the presence of competi-
tion actually strengthens our ability to use measurements 
of the abiotic environment to predict the environments 
that are suitable. To see this, note that in our examples a 
distribution model fi t to the probability of presence given 
competition has a higher AUC score than a model for the 
probability of presence in the absence of competition. Th is 
implies that, under some circumstances, biotic interactions 
make it easier to use measurements of the abiotic environ-
ment to model distributions. 

 An important consideration is how robust are these 
conclusions to parameter values? Models of CR dynamics 
have been infl uential particularly as conceptual descriptions 
of biotic interactions. However, they are diffi  cult to para-
meterize directly in empirical systems. See, for example, 
Miller et al. (2005) who review 1333 citations for Tilman 
(1980, 1982), but fi nds only 26 well-designed tests of some 
facet of CR theory. Several studies do measure components
of CR models. Tilman and Wedin (1991) for example 
makes empirical observations of species  ZNGI s. Th is work 
focuses on competition among plants for a single nutri-
ent, nitrogen. In their analysis, they use the concentration 
of nitrogen after three years of growth by grass species as a 
surrogate for the equilibrium concentration of nitrogen in 
the presence one consumer species  –  a point on the  ZNGI . 
Th e impact of organisms on a resource ( f  ij  ’ s) can be mea-
sured as the diff erence between the amount of the resource 
supplied and the amount of resource present after consump-
tion by the organisms. For example, Goldberg and Miller 
(1990) measure percentage of incident light that makes its 
way through a canopy of plants  –  a surrogate for the feed-
ing rate of plants on sunlight. Experimental work frequently 
manipulates the infl ow rate and supply point of resources 
through nutrient additions (Tilman 1977, Goldberg and 
Miller 1990, Tilman and Wedin 1991). It is however dif-
fi cult develop parameter values for multiple resources and 
multiple species at the landscape scale. 

 In spite of these limitations we can show that biotic inter-
actions would change the results of SDMs over a variety of 
parameter values. In Supplementary material Appendix 3, 
we simulate the ecological dynamics of our model with the 
deSolve package in R (Soetaert et al. 2009, R Development 
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Our understanding of ecology is complex and parameter 
rich. Th ough our ability to model species distributions is 
constantly improving, it seems unlikely that any existing 
approach will be able to fully encapsulate the interactions 
between organisms and the environment. If this is true, we 
need an understanding of the best way to use our limited 
knowledge of the natural world to make predictions about 
distributions. Our results demonstrate the uncertainty 
generated by biotic interactions can be readily modeled. 
As such, mathematical theory can provide a natural link 
between our mechanistic understanding of nature and our 
incomplete observations of species distributions. However, 
this will require ecologists and biogeographers to use the 
tools of mathematics rather than the free tools available to 
run SDMs. 
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  Appendix 1: the probability that an 
environment is suitable without 
competition 

 Start with the function for the probability that a species 
will be present in Eq. 4. To obtain the probability of pres-
ence conditioned only on  S  1  we must integrate out  S  2  
over the possible values of this variable; 0 to 1. Th is is equiva-
lent to calculating the portion of the graph above  ZNGI  1  for 
each value of  S  1 : 

� 1 	
1

0
d1

f12a12
	

f11a11 S1 dS2

1
0P(X � 1 | S1 � s1) � P(X � 1 | S1 � s1, S2 � s2)ds2

f12a12

d1
f12a12

f11a11 S1 	f12a12
� 1 �

 

 (7)

 

 Note that the probability of presence ranges from zero to 
one giving us Eq. 5. Note that this calculation and the cal-
culation in the following section assume that resources are 
uniformly distributed over the interval (0,1) as discussed in 
the main text.  

 Appendix 2: the probability that an 
environment is suitable in the face of 
competition 

 To compute the probability of presence, we must calcu-
late several values along the  S  1  axis. First, we compute the 
intersection of the two  ZNGI s to fi nd the minimum value 
of  S  1  at which species 1 can live. We must then determine 
the point where  L  2  reaches the maximum possible value for 
 S  2 , and the point at which  ZNGI  1  crosses the  S  1  intercept 
Fig. 1. 

 Supplementary material (Appendix E7103 at  �  www.
oikosoffi  ce.lu.se/appendix  
 ). Appendix 3. 
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 Th e equations describing the two  ZNGI s are: 

ZNGI1: R2 � 

f 12a12

d1 � f11a11R1

ZNGI2: R2 � 

f 22a22

d2 � f21a21R1

 By fi nding the solution for this system of two equations we 
obtain the point of intersection of the two  ZNGI s: 

S1,intersection �
f12 a12d2 f22a22d1

f12a12 f21a21 f11a11 f22a22

S2,intersection �
f21a21d1�

�

�

�

f11a11d2

f12a12 f21a21 f11a11 f22a22

 since the slope is: 

f 22R 2

f 21R 1

  L  2  a line collinear with impact vector for species 2, 
and passing through the intersection of the the two  ZNGI s 
can be described with the equation: 

S2 �
f22 S 2,intersection
f21 S1,intersection

S1 � b

 we may obtain the value of b by substituting in the intersection 
point for the two  ZNGI s ( S  1   �   S  1,intersection , S  2   �   S  2,intersection ) 
giving us: 

b �
(f21 � f22)(a11d2 f11� a21d1f21)
f21(a11a22 f11 f22 a12a21 f12 f21)�

 Th is produces a fi nal line of: 

S 2 �
f22( f21a21d1 � f11a11d2)
f21( f12a12d2 � f22a22d1)

S1 �
(f 21 � f 22)(a11d2 f 11 � a21d1 f 21)
f 21(a11a22f 11f 22 � a12a21f 12f 21)  

(8)

 We must fi nd  S  1,maxS2
 . To do this we must fi nd the  S  1  value 

when  S  2   �  1, given by: 

S1,maxS2
� (1� b )

f21 (f12 a12 d2� f22 a22d1)
f 22(f 21a21d1 � f 11a11d2)

 We can solve for the S1 intercept for the  ZNGI  1  :  

S1,intercept �
d1

f 11a11

 Using Eq. 8 we calculate the proportion of environments 
below the line describing the impact vector as: 

1

0

f 22(f 21a21d1 �

�

f 11a11d2)
f 21(f 12a12d2 f 22a22d1)

S1 �
(f 21� f 22)(a11d2 f 11 � a21d1 f21)
f 21(a11a22 f11 f22 � a12a21 f12 f 21)

dS2

 where: 

g (S1 ) �
f 22(f 21a21d1 � f 11a11d2)
f21 (f12 a12d2 � f22 a22d1)

S1 �
(f21 � f22)(a11d2 f11� a21d1 f21)
f21(a11a22 f11 f22� a12a21 f12 f21)

 Assuming  S 1, max S 2
    �  S 1,intercept, we can now derive Eq. 6 in the

main text. When  S 1   �   S1,intersection, species 1 is invariably 
absent and so the probability of presence is zero. When  S  1  
is between S1,intersection and  S  1,maxS2

  ,  the only suitable envi-
ronments are in between  L  2  and  ZNGI  1  .  Th e propor-
tion of environments lying between these points is given 
by  g(S1) �  h( S1 ). In the subsequent line segment between 
 S  1,maxS2

  and  S  1,interce pt, the proportion of suitable environ-
ments is given by h( S 1). When S1,intercept   �  S1  the probability 
of presence is 1. Combining the results from each of these 
line segments gives us Eq. 6 in the main text. 

Alternatively, it is possible that  S1,intercept  �  S1 ,maxS 2
 , 

in which case we reverse the order of these two terms recog-
nizing that in the segment between S1,intercept and  S1,maxS2

 , the 
probability of presence is the proportion of environments 
below  L  2  i.e.  g(S1).  Th is produces the conditional probability:

P(X � 1 �S1� s1, S2 � s2) �

1 if S1,maxS2
S1

g (S1 ) if S1,intercept S1 S1,maxS2

g (S1 ) � h(S1 ) if S1,intersection � S1 � S1,intercept

0 if S1� S1,intersection

�

� �


