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Comparative biologists often attempt to draw inferences about tempo and mode in evolution by comparing the fit of evolutionary

models to phylogenetic comparative data consisting of a molecular phylogeny with branch lengths and trait measurements from

extant taxa. These kinds of approaches ignore historical evidence for evolutionary pattern and process contained in the fossil

record. In this article, we show through simulation that incorporation of fossil information dramatically improves our ability to

distinguish among models of quantitative trait evolution using comparative data. We further suggest a novel Bayesian approach

that allows fossil information to be integrated even when explicit phylogenetic hypotheses are lacking for extinct representatives

of extant clades. By applying this approach to a comparative dataset comprising body sizes for caniform carnivorans, we show

that incorporation of fossil information not only improves ancestral state estimates relative to those derived from extant taxa

alone, but also results in preference of a model of evolution with trend toward large body size over alternative models such

as Brownian motion or Ornstein–Uhlenbeck processes. Our approach highlights the importance of considering fossil information

when making macroevolutionary inference, and provides a way to integrate the kind of sparse fossil information that is available

to most evolutionary biologists.
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“I am trying to pursue a science that is beginning to have a good

many practitioners but that has no name: the science of four-

dimensional biology or of time and life. Fossils are pertinent to

this field when they are treated as historical records . . .” (Simpson

1953)

The last decade has witnessed a revolution in evolutionary

biology. Fueled by the increased availability of time-calibrated

molecular phylogenies (Drummond and Rambaut 2007) and new

analytical tools for analyzing trait data, comparative biologists

have increasingly switched their attention from describing evo-

lutionary patterns and correlations to testing fundamental predic-

tions of macroevolutionary processes. The structure of phyloge-

nies when combined with models of continuous trait evolution

now allows biologists to address hypotheses about the manner

in which standing phenotypic diversity was generated by test-

ing for shifts in rates of trait evolution (O’Meara et al. 2006;

Thomas et al. 2006; Eastman et al. 2011; Revell et al. 2012)

or adaptive trait optima (Butler and King 2004; Beaulieu et al.

2012). Trait-dependent diversification models can also be used

to determine the impact of those traits on lineage diversification

(Maddison et al. 2007; FitzJohn et al. 2009; FitzJohn 2010). Tests

for early bursts (EBs) of phenotypic and lineage diversification
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consistent with classic adaptive radiation theory (Simpson 1944,

1953; Schluter 2000; Harmon et al. 2003; Gavrilets and Losos

2009) have been a particularly rich area of research (e.g., Pybus

and Harvey 2000; Rabosky and Lovette 2008a, b; Harmon et al.

2010; Burbrink and Pyron 2010; Mahler et al. 2010; Slater et al.

2010).

As historical records of the evolutionary process, fossil taxa

potentially provide a tremendous source of information regarding

the tempo and mode of lineage diversification and trait evolution.

However, the combining of paleontological and neontological (es-

pecially molecular) data into phylogenetic comparative methods

has been slow and the full impact of fossil information on analyses

of extant taxa remains relatively unexplored. A few studies have

noted explicit conflict between inferences about lineage diversi-

fication rates derived from molecular phylogenies and those de-

rived from the fossil record (Quental and Marshall 2009; Quental

and Marshall 2010; Simpson et al. 2011; Rosenblum et al. 2012;

see also Liow et al. 2010 for a simulation-based demonstration).

Because paleobiologists and neontologists use different kinds of

data to infer different aspects of net diversification rates (Foote

1996; Wagner 2000; Ricklefs 2007; Quental and Marshall 2010),

this discordance is, perhaps, unsurprising and has primarily led

to efforts to develop mathematical models that can better account

for unobserved originations and extinctions in molecular phylo-

genies of extant taxa (e.g., Etienne and Apol 2009; Rabosky 2009;

Morlon et al. 2011; Etienne et al. 2012).

For models of trait evolution, data integration is theoretically

more straightforward. If fossil species with measured traits can be

placed in a phylogeny, models of trait evolution can easily be fitted

to data comprising fossil and extant taxa. It has long been rec-

ognized that incorporating information from fossil taxa in phylo-

genetic reconstruction based on morphological data (Felsenstein

1978; Donoghue et al. 1989; Gauthier et al. 1988; Huelsenbeck

1991) and in ancestral state reconstructions of quantitative traits

(Oakley and Cunningham 2000; Finarelli and Flynn 2006; Alberts

et al. 2009) can improve parameter estimates and overall method

performance. The same should be true when comparing the fit

of different models of quantitative trait evolution to comparative

data, but this has not yet been thoroughly explored. Adapting

current methods would require knowing both where the fossil

connects to the tree and the branch length leading from the tree to

the fossil. A significant barrier to incorporating fossil information

in analyses of phenotypic evolution, however, is that we often only

have very general ideas about their relationships to extant taxa.

In these cases, integrating fossil information requires a different

approach.

In this article, we explore, via simulation, the impact of fossil

taxa on model selection when fitting models of quantitative trait

evolution to comparative data. We then present a novel Bayesian

approach that allows fossil data to be used to define informative

node priors when performing macroevolutionary analyses on ex-

tant taxa. We show that this approach performs well, even when

prior distributions are not exactly centered on the true values,

as might be the case when sampling from the incomplete fossil

record. We finally apply this new approach to the case of body

size evolution in caniform carnivores (Finarelli and Flynn 2006),

and show using a modest number of informative node priors that

incorporation of fossil information using our approach not only

improves parameter estimates, but also results in the selection of

a model with an evolutionary trend toward large body size that

otherwise could not be detected with data derived from extant

taxa.

Methods
MODELS OF TRAIT EVOLUTION

In this article, we consider four common models that have been

applied to quantitative trait data. The first and most basic evolu-

tionary model for continuous traits used by comparative biologists

is Brownian motion (BM), which reasonably approximates evo-

lution under drift or adaptive evolution tracking a randomly fluc-

tuating optimum (Cavalli-Sforza and Edwards 1967; Felsenstein

1973, 1985; Hansen and Martins 1996). Under BM, the vector

of trait values, X, for a clade of n species follow a multivariate

normal distribution,

X(1,2,...n) ∼ N (a, σ2C),

where a is an n × 1 vector in which each element is the expected

value of the trait (which, under BM, is the root state a), σ2 is the

Brownian rate parameter and C is an n × n covariance matrix,

referred to as the phylogenetic variance–covariance matrix. The

off-diagonal elements of C, Cij, represent the shared path length

from the root of the phylogenetic tree to the most recent common

ancestor of the ith and jth taxa, whereas diagonal elements Cii

represent the distance from the root node to the ith terminal taxon,

which may be extant or extinct. Most alternative models of trait

evolution, including the three that we consider in this article, are

variants on this basic BM model that involve a transformation

of a, σ2C (also referred to as V), or both. Under BM with a

directional trend (Trend: Hunt 2006), variances and covariances

remain the same but the expected value of the trait changes through

time as function of a trend parameter, M, that can be positive or

negative. Under a Brownian process with time-dependent rates,

also referred to as AC/DC (Accelerating/Decelerating evolution:

Blomberg et al. 2003), the rate of phenotypic evolution increases

(AC) or decreases (DC) exponentially through time as a function

of a parameter r that can vary between –∞ and ∞. The DC

part of this model has also been called EB by Harmon et al.

(2010). Finally, under an Ornstein–Uhlenbeck (OU) process, the
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Figure 1. Phylogenetic tree used for simulations. The tree was

generated under a birth–death process with birth rate = 0.1 and

death rate = 0.09. There are 100 extant taxa and 277 fossil taxa.

elements of V are transformed according to their distance from

the basal split in the phylogeny and by a so-called “rubber-band”

parameter, α (Hansen 1997; Butler and King 2004). Under OU,

as a trait evolves away from its optimal value, it is pulled back

toward the optimum with a strength corresponding to α. Although

it is possible for the root state and trait optimum to differ, or for

multiple trait optima (Butler and King 2004) or α values (Beaulieu

et al. 2012) to exist, comparative methods often assume that the

root state and optimum are the same, reducing OU to a single

stationary peak (SSP) model (Harmon et al. 2010) that we will

consider here. Useful summaries of these models and how they

relate to BM can be found in Hunt (2006) and Harmon et al.

(2010).

THE EFFECT OF FOSSIL TAXA ON MODEL SELECTION

We first assessed the impact of including fossil taxa with known

phylogenetic placement and branch lengths on model selection

performance. We generated a phylogenetic tree containing 100

extant taxa under a time-homogeneous, bifurcating birth–death

process using the geiger package (Harmon et al. 2008) for R (R

Development Core Team 2011). A tree of this size is large enough

to potentially allow for differentiation of models of trait evolu-

tion (FitzJohn et al. 2009; FitzJohn 2010; Harmon et al. 2010;

Boettiger et al. 2012) and is comparable to one that might be

used in a typical empirical analysis of extant taxa. To generate

a tree with a large number of extinct tips, we simulated under a

birth–death process with high relative extinction rate (λ = 0.1,

μ = 0.09). The resulting tree had a total of 377 taxa, with a root

age of 60.95 time units (Fig. 1). To avoid confounding variation

due to fossil inclusion with variation associated with phylogenetic

tree shape, we focus here on analyses from a single simulated tree.

Results from fitting models to alternative phylogenetic trees were

always qualitatively consistent, although we note that overall,

Table 1. Parameter values and sampled ranges used for simula-

tion tests. Under Trend, the parameter is mu, the trend parameter.

Under SSP, the parameter is α, the strength of selection. Under

AC/DC, the parameter is r, the exponential change parameter.

Model A σ2 non-BM parameter

BM 0 U[0, 0.5] –
Trend 0 0.1 U[0 0.2]
SSP 0 0.1 U[0.01, 10]
AC 0 0.0013 U[0, 0.1]
DC 0 0.13 U[–0.1, 0]

fossils improve model selection more when extinction rates are

higher (see Appendix S1 for full details). We next simulated trait

evolution on the complete 377-taxon tree under the four models

of trait evolution: BM, Trend, AC/DC, and SSP. To explore the

effects of varying model parameters on model selection with or

without fossil information, we simulated 500 datasets under each

model, with model parameters drawn at random from uniform

ranges (Table 1). The root state was fixed at a = 0 for simula-

tions under all models. For BM, we varied the rate parameter σ2.

For all other models, we fixed σ2 and varied the model-specific

parameter as specified in Table 1. To fully explore model-fitting

performance, we treated AC/DC as two separate models (AC and

DC) for simulation purposes.

For each set of simulations, we initially fit the four models

to datasets comprising extant taxa only using maximum likeli-

hood (ML). We then repeated this procedure five times, each time

randomly adding 5%, 10%, 25%, 50%, and 100% of the total

number of fossil taxa to the dataset. Model fitting was done us-

ing the fitContinuous function in geiger (Harmon et al. 2008).

For each level of fossil sampling, we compared support for the

four models using small-sample corrected Akaike weights (AICc;

Burnham and Anderson 2002), where the sample size equals the

number of sampled terminals in the phylogeny, including fossils

when applicable. If fossils have a positive effect on model selec-

tion, then Akaike weights for the true model should increase as

more fossil taxa are added.

The addition of fossil taxa to a dataset comprising extant taxa,

as described above, increases the total number of taxa. Thus, any

improvement in model-fitting performance could be attributable

to a larger net sample size, rather than just the inclusion of fossil

taxa. We therefore also investigated whether, given a fixed sam-

ple size of taxa, we should prefer to sample fossils or extant taxa.

We repeated the model-fitting procedure described above but ran-

domly substituted proportions of extant taxa for fossil taxa, rather

than adding them, thus maintaining a total of 100 taxa. We re-

peated this procedure for proportions of 5%, 10%, 25%, 50%,

and 95% of the total number of extant species, using 95% rather

than 100% in the final step so that the resulting tree maintained
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the same root-tip distance without rescaling of branch lengths.

Model support was again assessed using AICc weights.

USING FOSSILS AS NODE PRIORS

For most comparative biologists, phylogenetic information is typ-

ically lacking for fossil members of their study clade. In these

cases, integrating available fossil information requires a different

approach to ML. Under the multivariate normal distribution, the

log-likelihood for a set of observed trait values X is computed as

ln(L) = ln

⎛
⎜⎜⎝

exp

{
1

2
[X − E (X)]′ (V)−1 [X − E (X)]

}
√

(2π)n · det (V)

⎞
⎟⎟⎠ ,

where E(X) is a n × 1 vector of expected trait values, prime

specifies that the transpose is taken, and V is the model-specific

variance–covariance matrix (O’Meara et al. 2006; Harmon et al.

2010). Normally, only trait values for the terminal taxa are repre-

sented in this expression; likelihood approaches to fitting models

of trait evolution avoid explicit reconstruction of trait values at

nodes other than the root by integrating parameter estimates over

all possible ancestral states (Pagel 1994, 1997; Schluter et al.

1997). In a Bayesian framework, this is equivalent to assuming a

uniform prior density on each ancestral state, with the result that

their posterior densities are directly proportional to the likelihood

surface (Maddison 1991; Schluter et al. 1997). However, if we

lack precise phylogenetic information regarding the placement

fossil taxa but they can be associated with particular nodes in a

molecular phylogeny, then their traits could be used to inform

prior distributions placed on those nodes when fitting models to

datasets comprising extant taxa.

We implemented a Markov chain Monte Carlo (MCMC) al-

gorithm to sample trait evolutionary model parameters and node

values from their posterior distributions while allowing informa-

tive prior distributions to be placed on nodes with associated fossil

taxa. At each step in our MCMC sampler, we propose model pa-

rameters and ancestral states, and assess the posterior probability

of the model as the product of the likelihood and prior probabili-

ties of proposed parameters and ancestral states. The decision to

accept or reject proposed parameters are made using the standard

Metropolis–Hastings algorithm (Metropolis et al. 1953; Hastings

1970). R code to perform these analyses is contained in the func-

tion fitContinuousMCMC(·), which will be available via CRAN

in a forthcoming release of the geiger library, and is available in

the short term as a package download from LJH’s software page

(http://www.webpages.uidaho.edu/∼lukeh/software/index.html).

To test this approach, we performed five MCMC runs with

each set of simulations (see above) under each of the four models

of evolution. In the first set of runs, the four models were fitted

to the simulated data with uninformative priors on all node states.

We subsequently performed runs where informative normal prior

distributions were applied to random samples of 5%, 10%, 25%,

and 50% of nodes in the tree, excluding the root node. For each

node, the mean of the prior was set to the true node value taken

from the simulated data, and the standard deviation (SD) was set

at an arbitrarily small value of 0.01. In Appendix S1, we present

results from an additional test of our approach using node priors

sampled from a simulated fossil. In these tests, informative node

priors were defined based on fossil taxa that (1) were descendents

of the immediate parent node to the node of interest and (2) went

extinct within a 10 million year window centered on that node. As

a result of this sampling scheme, not all nodes possessed informa-

tive priors, and those that did had priors that were not necessarily

centered exactly on their true values. Furthermore, some priors

were defined based on only a few fossils with distant phyloge-

netic relationships to the focal node (see Appendix S1 for more

details). For both sets of analyses, nodes were sampled at random

among simulations and sampling schemes. We set uninformative

priors of U[–∞, ∞] on a, ln(σ2) and the remaining nodes for each

model, and on M for the Trend model. For SSP, we used a uniform

prior on α of [10−5, ∞]. For AC/DC, we applied a uniform prior

U[–0.5, 0.5] to the exponential change parameter, r. Each analysis

was run for 200,000 generations, sampling from the chain every

100 steps, with the first 25% of samples discarded as burn-in. For

each fossil sampling regime, the three non-Brownian models were

compared to BM using Bayes factors computed from harmonic

means of the sampled likelihoods (Newton and Raftery 1994;

Kass and Raftery 1995). To assess false-positive rates, that is,

cases in which we select an incorrect model with strong support,

we assumed that a value for 2∗Ln (Bayes factor) of 2 or greater

indicated positive support for that model over the null, BM model

(Kass and Raftery 1995; Raftery 1996).

Results
THE EFFECT OF FOSSIL TAXA ON MODEL SELECTION

Adding fossil taxa with known phylogenetic placement and

branch lengths had a great impact on model selection perfor-

mance, but only when the true model deviated from pure BM.

When BM was the true model, we found low power to favor it

over other candidate models based on extant taxa only. Adding

fossils had no effect on model selection for any value of σ2

(Figs. 2A, S6A; Table S3). For the other models, adding fossil

taxa increased both the overall power to detect the true model and

the power to do so at small parameter values (i.e., those resulting

in a model most similar to BM) compared to fits using extant

taxa only. A particularly striking result was recovered when the

true model was accelerating evolution. Here, AC was never fa-

vored over other models using extant taxa only (Figs. 2D, S6M;
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Figure 2. Median Akaike weights for the four evolutionary models fitted by maximum likelihood to 500 datasets. Datasets were

simulated under BM (A, F), Trend (B, G), DC (C, H), AC (D, I) and SSP (E, J). In the top row (A–E), increasing proportions of the 277 available

fossils were randomly added to the 100-tip ultrametric tree. In the bottom row (F–J), proportions of extant taxa were replaced with

fossils.

Table S3). Instead, BM was favored at low increases in rate and

SSP at higher increases (Fig. S6M). The addition of fossils dra-

matically increased support for the correct model of AC/DC while

simultaneously reducing support for SSP and BM (Figs. 2D,

S6N–P).

We found that swapping extant taxa for fossils while main-

taining a constant total number of taxa also resulted in improved

model selection performance, relative to analyses based on ex-

tant taxa only. This result suggests that on a per-taxon basis,

fossils contain more information regarding the mode of trait evo-

lution than do extant taxa. When BM was the true model, Akaike

weights for BM remained slightly higher than those for the al-

ternative models, but still ambiguous under all levels of fossil

swapping (Figs. 2F, S7A–D; Table S4). For all other models,

swapping fossils for extant taxa both increased support for the

true model relative to other models and the power to discern them

at low parameter values (Figs. 2H–J, S7E–T; Table S4). One no-

table exception was found when the true model was SSP. In this

case, weights for SSP decreased from a median weight of 1 when

no fossils were sampled to a median weight of 0.59 with 5% re-

placement of extant taxa by fossils (Fig. 2J; Table S4). This result

may reflect the observations that: (1) SSP and AC are difficult to

distinguish without fossil information, and/or (2) without fossils,

SSP tends to be favored over AC, regardless of which is the true

model. Reducing the number of extant taxa and adding a few

fossils seems to have the effect of accentuating this uncertainty.

However, increasing the proportion of fossils swapped to 10%

increased median weights for SSP to 0.99, suggesting that high

levels of fossil sampling are not necessary to increase confident

identification of the true model.

USING FOSSILS AS NODE PRIORS

When BM was the true model, there was very little power to dis-

tinguish it from the three alternative models using Bayes factor

comparison with uninformative priors on all node states. As with

ML estimates, BM could not be rejected however (Fig. 3A). There

was still power to distinguish the three other models from BM us-

ing uninformative node priors, particularly when parameter values

were large (Fig. 3G, J, M). When SSP was the true model, it could

be readily distinguished from BM at all values of α, although AC

also received positive, albeit lower support over BM. When AC

was the true model, we found it to be indistinguishable from SSP,

even at large values of r, although both received positive support

relative to BM.

Addition of informative priors on node values improved

model selection performance in all cases except where BM was

the true model (Fig. 3B, C). BM remained indistinguishable from

the alternative models at all values of node sampling, and false-

positive rates did not decrease appreciably, except for compar-

isons of SSP to BM (Table 2). For the other models, addition of

priors on node values increased power to identify the true model,

with increasing numbers of priors markedly increasing power at

low parameter values (Fig. 3). The most notable result was recov-

ered when the true model was AC. Although AC and SSP were

equally favored over BM based on extant taxa alone, addition of

fossil information in the form of node priors resulted in increased

support for the true model (AC), while support for SSP decreased.

Similarly, increasing the number of nodes with informative priors

increased support for SSP while decreasing support for AC when

SSP was the true model. In Appendix S1, we show that our ap-

proach also performs well using informative priors derived from
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Figure 3. Median Bayes factors for candidate models fitted to 500 simulated datasets with informative node value priors on 0, 10,

and 50% of total nodes in the tree. In each case, candidate models are compared to a null model of Brownian motion. Rows represent

simulations under BM (A–C), Trend (D–F), DC (G–I), AC (J–L), and SSP (M–O). In each panel, the x-axis represents the range of model

parameter values simulated under, whereas plotted lines represented the medians of binned Bayes factors. Line colors are Trend (gray),

AC/DC (blue), and SSP (black), all compared to BM. The dashed red line indicates the Bayes Factor required to achieve positive evidence

in favor of a given candidate model.

a simulated fossil record, despite the fact that priors were derived

from a small number of fossils that were often younger that the

node of interest.

BODY SIZE EVOLUTION IN CANIFORM

CARNIVORANS

To illustrate the application of our Bayesian approach to an em-

pirical dataset, we revisited the case of body size evolution in can-

iform carnivores (Finarelli and Flynn 2006). Morphological and

ecological diversity within the Caniformia is particularly striking;

caniforms range from exclusive herbivores to specialist carnivores

(Figueirido et al. 2010) and span the entire range of body sizes en-

compassed by extant Carnivora (over four orders of magnitude).

Finarelli and Flynn (2006) demonstrated that unreasonably large

estimates (∼25 kg) for the ancestral body size of caniforms were

obtained when only extant taxa are considered. However, when
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Table 2. False-positive rates for Bayesian model selection using node value priors centered on the true node value. False positives under

three Bayes factor cut-offs are given.

2×lnBF=2 2×lnBF=6 2×lnBF=10

Prop. nodes Trend AC/DC SSP Trend AC/DC SSP Trend AC/DC SSP

0 0.00 0.11 0.11 0.01 0.01 0.01 0 0 0
0.05 0.09 0.11 0.07 0.01 0.01 0.01 0 0 0
0.1 0.09 0.12 0.07 0.01 0.01 0.01 0 0 0
0.25 0.09 0.11 0.07 0.01 0.01 0.01 0 0 0
0.5 0.10 0.12 0.07 0.01 0.01 0.01 0 0 0

fossil taxa were included in their phylogeny, more reasonable

ancestral size estimates of ∼5 kg were obtained. Finarelli and

Flynn (2006) suggested that this might be the result of an evo-

lutionary trend toward large body size (Cope’s rule, e.g., Alroy

1998; Purvis and Orme 2005) in some extant families. We there-

fore asked whether the incorporation of fossil information into

a comparative dataset derived from extant caniform carnivorans

could provide support for this model over other candidate models

of body size evolution.

CANIFORM METHODS

Body mass data for extant caniform species were obtained from

the panTHERIA database (Jones et al. 2009), with missing species

added from the literature where possible. We initially attempted to

use the carnivoran portion of the mammalian supertree (Bininda-

Emonds et al. 2007). However, attempts to identify fossil taxa that

could be phylogenetically and temporally associated with nodes

in that tree revealed some significant discrepancies in topology

and divergence times compared with current understanding of

carnivoran phylogeny (Bardeleben et al. 2005; Flynn et al. 2005;

Koepfli et al. 2007; Koepfli et al. 2008; Krause et al. 2008; Eizirik

et al. 2010; Fulton and Strobeck 2010a, b; Meredith et al. 2011).

We therefore constructed a new time-calibrated phylogeny for

caniforms by grafting published and new time-calibrated phy-

logenies for caniform clades onto a family-level backbone tree

(Eizirik et al. 2010). Full details of phylogeny reconstruction are

provided in Appendix S2 and .xml files have been deposited on

Dryad. After removing nonoverlapping species from the tree and

body size data, we retained a final sample of 135 taxa, approxi-

mately 82% of extant caniform diversity (Fig. 4). We subsequently

surveyed the literature for fossil taxa that could be associated with

nodes in the caniform phylogeny, where possible giving prefer-

ence to fossils that had been subject to phylogenetic analyses. We

used published estimates of body mass when available, but other-

wise estimated body masses for fossil taxa from lower first molar

lengths, using regression equations provided in Van Valkenburgh

(1990). Informative node value priors were derived from means

and SDs computed from natural log-transformed fossil masses.

   2000

body mass 
 (kg)

50 40 30 20 10 0

Millions of Years Ago

Canidae

Ursidae
Odobenidae

Otariidae

Phocidae

Mephitidae
Ailuridae

Procyonidae

Mustelidae

1  100

Figure 4. Time-calibrated phylogeny of 135 species of extant can-

iforms and associated body masses (note that bar lengths are rep-

resented on a log scale). Colors indicate caniform families. Gray

circles at nodes indicate locations of fossil priors used for fitting

models of body size evolution. The black node label indicates the

root prior.

The final set of priors spanned 11 internal nodes, plus the root

node (Fig. 4; Table 3). Body masses for individual fossil taxa used

to define informative node priors are provided in Table S7.

We first compared the fit of three models of trait evolution

(BM, AC/DC, SSP) with uninformative priors placed on all node

values. Two chains were run for 500,000 generations each, sam-

pling from the chain every 100 steps, and the first 10% of samples

from each run as burn-in based on inspection of likelihood trace

plots. Marginal likelihoods and parameter values were computed

from the retained sample. We then re-ran analyses using the

same MCMC procedures but with informative normal prior

distributions placed on the 11 internal nodes with associated fossil

information. For these analyses, the Trend model was added to the

suite of models fitted. Because fossil information was available

for the root node of caniform phylogeny, we performed a third
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Table 3. Priors used for fitting models of trait evolution to the

caniform dataset. Means and standard deviations are in units of

natural log (Ln) kilogram.

Node Mean SD

Root node 0.749 0.485
MRCA Caninae 1.451 0.487
MRCA Vulpini 1.974 0.29
MRCA Vulpes 1.831 0.211
MRCA Canini 2.225 0.184
MRCA Arctoidea 0.615 0.336
MRCA Ursinae/Tremarctinae 4.293 0.129
MRCA Ursinae 4.406 0.028
MRCA crown Mustelidae 1.296 0.4645
MRCA crown Procyonidae 0.417 0.172
MRCA Pinnipedimorpha+Musteloidea 1.14 0.33
MRCA crown Pinnipedia 4.111 0.957

set of analyses with priors on the 11 internal nodes plus the root

node.

CANIFORM RESULTS

Fossils had a significant impact on root state estimation (Fig. 5).

With uninformative priors on all internal nodes, we estimated

a large body mass (∼18.5 kg) for the ancestral caniform under

all models, albeit with wide 95% highest posterior density inter-

vals (HPD: 1.85–171 kg; Fig. 5). Fitting the same models with

informative prior distributions on 11 internal nodes resulted in

substantially smaller modal estimates (∼2.5 kg) and narrower

95% HPD intervals for the root state (0.34–10 kg; Fig. 5). Ad-

dition of a root node prior unsurprisingly resulted in narrower

still 95% HPD intervals (0.89–4.5 kg), although the mode did not

shift. Overall, these results are consistent with those of Finarelli

and Flynn (2006) and appear to suggest a non-Brownian model

of body size evolution in caniform carnivorans.

Fossils also had an impact on model selection for the cani-

form body size dataset. With uninformative priors on all nodes,

BM, AC/DC, and SSP were broadly indistinguishable (Table 4).

The addition of fossil-derived priors on 11 internal nodes had little

effect on comparisons between these three models, but did lead

to positive (2 × lnBF > 2) support for Trend over BM. Addition

of a prior on the root state had little impact on model selection

compared with results obtained using internal node priors only

(Table 4).

Although we find positive evidence for a trend toward in-

creasing body size in caniform evolution, support for this model

over BM is relatively low. One possible reason for this is the

interacting effect of the strength of the trend and the proportion

of nodes for which we had available prior information. Our es-

timates for the Trend parameter were low (M = 0.0296, 95%

HPD: –0.002–0.063), which is approximately equivalent to a net

expected increase in size of ∼7 kg over the 50 million year his-

tory of extant caniforms. Based on simulations, a trend of this

magnitude is difficult to favor with positive evidence or greater

with informative priors on only 10% of nodes (Fig. 3E; Appendix

S1). The fact that we find positive evidence in favor of Trend with

only 8% of available nodes sampled is therefore encouraging. It

is also worth noting that the Trend model used here assumes a

homogenous directional trend across all lineages through time

(Hunt 2006). This might be expected under a phenomenon such

as Cope’s rule where an active trend drives all clade members

toward larger size (Alroy 1998; Van Valkenburgh et al. 2004;

Purvis and Orme 2005). However, it is possible that the evolu-

tion of caniform body sizes is better explained by a passive trend,

such as diffusion away from a reflective or absorbing lower bound

(Stanley 1973; Gould 1988; Alroy 2000). Although such an ar-

gument makes sense on physiological grounds (Tracy 1977; West

et al. 2002), it cannot currently be tested using phylogenetic com-

parative models.

Discussion
Fitting models of quantitative trait evolution to phylogenetic com-

parative data provide a powerful way of testing fundamental hy-

potheses about macroevolutionary pattern and process (Hansen

1997; Blomberg et al. 2003; Butler and King 2004; O’Meara

et al. 2006; Thomas et al. 2006; Thomas et al. 2009; FitzJohn

2010; Harmon et al. 2010; Eastman et al. 2011; Revell et al. 2012;

Slater et al. 2012). All too frequently however, analyses are lim-

ited to extant taxa, neglecting the historical information that fossil

data can provide (Simpson 1944, 1953; Losos 2011). The results

presented in this study suggest that inclusion of just a few fossil

taxa not only increases the statistical power of these approaches,

but can also lead to differentiation of models that simply cannot

be distinguished based on extant taxa data alone. Furthermore,

although many clades lack a well-sampled fossil record (a point

we will return to at the end of this article), we have shown how

sparse fossil information without phylogenetic resolution can be

integrated into macroevolutionary analysis in a way that can still

improve model selection over estimates based on extant taxa only.

DO FOSSILS IMPROVE ESTIMATES OF TRAIT

EVOLUTION?

We found that fossils had little effect on model selection when

BM was the generating model of evolution. Instead, the great-

est impact of fossils is realized when the generating model is a

time-heterogeneous processes. One possible explanation for this

result is that our model comparison metric, Bayes factors derived

from the harmonic mean estimator (HME) of the marginal likeli-

hood, is a poor model selection tool. Recent work in demographic
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Figure 5. Posterior distributions for the root node state in the caniform example estimated under BM (A), Trend (B), AC/DC (C), and SSP

(D). Colors represent MCMC analyses with and without fossil information incorporated as informative node priors.

Table 4. Results of model fitting for the caniform dataset with no priors, with node priors, and with node and root priors. Marginal

likelihoods are given for all models except Trend with no priors, which cannot be distinguished from BM. Bayes factors are computed for

models relative to BM. Asterix indicates positive evidence in favor of the candidate model over BM.

No priors Node priors, no root prior Node priors, root prior

Marginal Lk 2×LnBF Marginal Lk 2×LnBF Marginal Lk 2×LnBF

BM −169.61 – −178.72 – −178.36 –
Trend – – −177.33 2.77∗ −177.02 2.69∗

SSP −169.54 0.13 −178.74 −0.05 −178.64 −0.55
ACDC −169.83 −0.44 −179.17 −0.90 −178.73 −0.74

and phylogenetic model selection has demonstrated that this can

sometimes be the case (Xie et al. 2011; Baele et al. in press).

Alternative metrics, such as AICM (Raftery et al. 2007), and

path sampling (thermodynamic integration: Lartillot and Phillipe

2006) and stepping-stone (Xie et al. 2011) algorithms can out-

perform HME estimators in many cases (Baele et al. in press).

The integration of Bayesian approaches into phylogenetic com-

parative methods is still in its infancy, but further work on model

selection procedures has the potential to greatly increase power

to discern among models of quantitative trait evolution (see also

Boettiger et al. 2012).

The most obvious impact of adding fossil data was for the

case of the Trend model, where the expected value of a trait in-

creases or decreases as a function of time. Identification of a trend

is therefore explicitly dependent on knowledge of both the start-

ing and end states. If a directional trend exists in comparative

data, our ability to accurately infer the ancestral state for the trait

from data derived from extant taxa only is lost as the trait evolves

away from its initial state (e.g., Oakley and Cunningham 2000;

Finarelli and Flynn, 2006; Albert et al. 2009). As a result, we

completely lack the ability to fit the Trend model without some

fossil information (it should be noted however that a strong prior

on the root state would be sufficient to allow this model to be

fitted; Oakely and Cunningham 2000; see also Felsenstein 1988).

The improved power for the other models fitted here is similarly a

function of their time dependency. It would be interesting to fur-

ther investigate the impact of fossils when fitting models allowing

for components of punctuated (i.e., speciational) and gradual (i.e.,

Brownian) evolution (Hunt 2007b, 2008; Bokma 2008).

We found that without fossils, the power to discern decelerat-

ing evolution was greater than that for accelerating evolution. This

makes sense given the differing expectations of these opposing

processes. Decelerating evolution results in phenotypic disparity

being partitioned among rather than within clades, a pattern that

can be readily identified from extant taxa data when the difference

between initial and end rates is large enough (Harmon et al. 2003).

Adding fossils provides additional information about the tempo

at which disparity evolves and thus further allows for differenti-

ation of slow deceleration from a constant rates process (Figs. 2,

3, S3, S6, S7). Under accelerating evolution, in contrast, faster

evolution toward the tips result in increased within-clade dispar-

ity relative to among clade disparity—a pattern also seen under
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the SSP model. Our results suggest that accelerating evolution is

difficult to distinguish from BM with a fast rate based on extant

taxa alone unless the magnitude of acceleration is relatively large.

In such cases, however, accelerating evolution becomes difficult

to distinguish from SSP.

Fossil information dramatically improved our ability to dis-

tinguish SSP and AC. Accelerating evolution results in rapid evo-

lutionary change along branches closer to the tips of a phylogeny,

with the net result that recent species possess markedly different

trait values than their sister species. Looking at extant taxa only,

the outcome of this process is very similar to an OU process, as

both tend to erase phylogenetic signal (Revell et al. 2008). The in-

corporation of data from fossil taxa provides a source of historical

information regarding character change toward the root the tree

and thus enables these two models to be distinguished. This result

is particularly interesting given that Harmon et al. (2010) found

a prevalence of signal for SSP over BM and DC (or “EB”) in a

large number of comparative datasets. Those authors suggested

that the EB pattern expected under adaptive radiation hypotheses

(Simpson 1944, 1953) might be rare in comparative data and that

stabilizing selection might be a more pervasive pattern. Adding

fossil information is unlikely to swing a preferred SSP model to

DC; however, we are unable to rule out that a pervasive pattern

of accelerating evolution is obscured in these datasets. Acceler-

ating evolution might occur in adaptively radiating clades that

have yet to saturate ecomorphospace, for example, as a young

clade radiates to replace a waning, ecologically equivalent clade

(e.g., Van Valkenburgh 1999). If diversifying clades are charac-

terized by these kinds of patterns, then fossil information is of an

even greater significance in providing insight into the dynamics

of adaptive radiation.

USING FOSSILS AS NODE PRIORS

We also showed that trait data from fossil taxa can be meaning-

fully incorporated into comparative analyses as informative prior

distributions on node values. This is particularly appealing as fos-

sil representatives of extant clades are infrequently placed in an

explicit phylogenetic context. Moreover, even when fossils can

be placed in a phylogeny, branch lengths are typically not avail-

able (but see Pyron 2011), rendering fitting of time-dependent

processes difficult. Felsenstein (2002) suggested an approach by

which fossil taxa could be placed in a molecular phylogeny and

their branch lengths inferred using their continuous trait values. In

this scheme, fossils would be placed by maximizing the likelihood

of the BM process given knowledge of the phylogeny of extant

taxa, as might be inferred from molecular data. Although Felsen-

stein described this algorithm with a view toward phylogenetic

inference rather than model fitting (a form of “Total Evidence”:

Felsenstein 2002, p. 32), it could potentially be applied to the

problem that we have attempted to solve. The approach we have

used here, in contrast, makes explicit use of synapomorphy-based

assessment of fossil placement that is more familiar to evolution-

ary biologists from divergence time estimation (Drummond and

Rambaut 2007), and has more in common with approaches, such

as ancestor-descendent comparison, that have been traditionally

been used in paleobiological inference (Gingerich 1987; Hulbert

1993; Wagner 1996; Alroy 1998; Van Valkenburgh et al. 2004;

Hone et al. 2005). Our results show that most power is obtained

when fossils are placed in as precise a phylogenetic context as

possible. If this is not possible, then using fossils as priors on

node states is still preferable over approaches that ignore fossil

information entirely.

A pervasive concern in the use of Bayesian approaches is

that inappropriate or incorrect priors can dominate the analysis,

leading to misleading signal. Careful selection of fossils tempo-

rally spanning either side of a node of interest should ameliorate

any tendency toward biased or incorrect priors (see Supporting

Information). It should also be noted that our approach allows for

the same fossil to be used in defining more than one prior. For

example, a fossil might be the oldest member of a crown group

while also being a stem representative of a more inclusive clade.

In this case, the same fossil could be used when defining the distri-

butions placed on both nodes. A logical extension of our method

would be to use the temporal proximity of a fossil or set of fossils

to determine the strength of the prior placed on a node. Using in-

formation in this way should lead to more appropriate priors and

makes more complete use of potentially sparse available data.

One limitation of our approach is that fossil diversity from

radiations along stem lineages will be mostly unusable if the entire

stem group has gone extinct. For example, although we were able

to associate fossil taxa with 12 nodes in the phylogeny of extant

caniforms, we were unable to include information from the ex-

tinct canid subfamilies Hesperocyoninae and Borophaginae, the

entire family Amphicyonidae, and the majority of fossil mem-

bers of the extant, monotypic families Odobenidae (walruses)

and Ailuridae (red panda), despite the fact that all possess good-

to-excellent fossil records (Deméré 1994; Wang 1994; Hunt 1998;

Wang et al. 1999; Morlo and Peigné 2010). Given that biologi-

cally reasonable values for most evolutionary model parameters

are likely to be at the lower end of their respective scales, we po-

tentially surrender tremendous statistical power by not including

this available information. Reassuringly, both our simulations and

our empirical example demonstrate that if a trend in trait values

or time-dependency of rates actually exists, we retain substan-

tial power to detect this with a sample of extant taxa and a set

of informative node priors derived from suitable fossil data. For

more complex models of trait diversification however, explicit

phylogenetic hypotheses or alternative approaches for integrat-

ing phylogenetically uncertain fossil radiations are likely to be

necessary.
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BROADER IMPLICATIONS—FOSSILS, PHYLOGENIES,

AND COMPARATIVE METHODS

Although the main message of this article is a statistical one—

that incorporation of fossil information can improve model

selection—our results raise a broader conceptual point regard-

ing the utility of phylogenetic comparative methods. While dis-

cussing some limitations of phylogenetic methods, Losos (2011)

argued that their use might introduce errors of unknown effect or

magnitude because many traits do not exhibit phylogenetic signal.

Although this observation may well be true, even where a trait

appears to lack phylogenetic signal its evolution was still framed

by the phylogenetic covariation among lineages in the clade of

interest (Revell et al. 2008). Our simulation results suggest that

incorporation of fossil data into comparative analysis where there

is seemingly no phylogenetic signal can uncover phylogeny-wide

trends in the tempo of trait evolution. For example, our approach

can differentiate SSP from AC, two models which both pro-

duce relatively low levels of “phylogenetic signal” among extant

taxa.

What do our results mean for future macroevolutionary stud-

ies when the fossil records of the most striking examples of adap-

tive radiation, such as East African rift lake cichlids, Caribbean

anoles, Galapagos finches, and Hawaiian silverswords (Schluter

2000), are at best limited and at worst completely lacking

(Harmon et al. 2010)? The answer to this question is complex

and context dependent, but we suggest two generalizations can be

made. First, in many respects, our results do not limit the signif-

icance of these systems. The fundamental prediction of adaptive

radiation theory, at least in its classical context (Simpson 1944,

1953), is that clades should exhibit EBs of lineage and trait di-

versification as they rapidly radiate to fill new adaptive zones

(Harmon et al. 2003). Although it is becoming clear that our

ability to detect diversity-dependent lineage diversification from

molecular phylogenies of extant taxa alone is limited over large

temporal scales (Liow et al. 2010; Quental and Marshall 2010;

Morlon et al. 2011; Etienne et al. 2012), the same does not appear

to hold true for EBs of trait evolution, making this a promising av-

enue for future work on rapid radiations (Mahler et al. 2010; Slater

et al. 2010; Dornburg et al. 2011). Because many of these flag-

ship clades were recognized as putative adaptive radiations due

to their exceptional phenotypic diversity and patterns of conver-

gence, their lack of fossil records might not be a great impediment

to continued study of their adaptive diversification. With this said,

our results also suggest that the most comprehensive picture of

tempo and mode in macroevolution will be painted using clades

that possess relatively complete molecular phylogenies and well-

sampled fossil records. These kinds of datasets are likely to be

limited to taxa that possess robust fossilizable elements, such as

mammals, or small marine taxa that are abundant in highly fossil-

iferous deposits (e.g., Webster et al. 2004; Hunt 2007a; Aze et al.

2011; Ezard et al. 2011). Although these taxa were instrumen-

tal in the development of macroevolutionary theory in the first

half of the 20th century (Simpson 1944, 1953), they have been

largely neglected in recent years. A return to these model systems

therefore seems well overdue.
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